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Abstract
We elaborate on a blended continuum/atomistic theoretical picture of the nonlinear elastic
properties of nanostructured materials, looking at diverse aspects such as dispersions of
inhomogeneities within a matrix, random or graded nanograined materials, two-dimensional
atomic sheets. In particular, we discuss the possible onset of length-scale effects and we
establish the limits and merits of continuum versus atomistics. While most situations here
discussed correspond to model systems, the main conclusions have a paradigmatic relevance
and indeed apply to most nanomaterials of current interest.

This article was invited by S Washburn.
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List of symbols

xi , Xi , ri position vectors
ui displacement vector
Fi,j , Ji,j deformation and displacement

gradients

εij , �ij small-strain and local-rotation tensors
Tij Cauchy stress tensor
δij Kroenecker symbol
U strain energy function
Cijkh or Cpq second-order elastic constants

(Voigt)
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Cijkhnm or Cpql third-order elastic constants
(Voigt)

λ and µ Lamè coefficients
E3D and ν3D Young’s modulus and

Poisson’s ratio (3D)
E and ν Young’s modulus and

Poisson’s ratio (2D)
K bulk modulus (3D)
k bulk modulus (2D)
Sijhk Eshelby tensor
�1, �2, �3 nonlinear elastic coefficients
A, B, C nonlinear Landau moduli (3D)
e, f nonlinear Landau moduli (2D)
κl, γl, κh, γh, κa, γa interatomic potential parameters
D�n effective nonlinear modulus

(graphene, graphane)
LI and LII linear and nonlinear longitudinal

coefficients
T I and T II linear and nonlinear transversal

coefficients

1. Introduction

In principle, any nanostructured material can be conceptual-
ized as a distribution of nanoscale inhomogeneities, embed-
ded within an otherwise homogeneous hosting matrix. This
very general picture, in fact, embodies the specific case of
an isolated nanoparticle (such as a buried quantum dot or a
hard/soft elastic inclusion), the more general case of a disper-
sion of inhomogeneities (forming, for instance, a nanograined
material or a nanograded interface) or even the case of a fiber-
reinforced matrix or a texture of nanograins. The same model
also applies to nanoporous systems, as well as to multicracked
materials. While in the last two examples the inhomogeneities
are indeed represented by void volumes, in the previous ones
they rather correspond to a second-phase material with unlike
physical properties with respect to the hosting matrix.

Nanostructured materials play a major role in modern
materials physics, both for the investigation on fundamental
properties of condensed matter at the nanoscale (most of which
are affected by the interplay between quantum mechanical
features and confinement or length-scale issues) and for their
large technological impact (basically due to the fact that
their functional and structural properties can be tailored by
varying the nanoparticles size and shape). As a matter of
fact, nanostructured materials are nowadays investigated in
fields as diverse as nano-/opto-electronics or photonics, energy
harvesting and production, advanced structural engineering,
information and communication technologies and even
environmental sciences and biotechnology [1–4].

The elastic properties of nanostructured systems are
crucially important since they are central to determine their
overall mechanical behavior upon loading, as well as to
affect their microstructure evolution during growth or self-
assembling [5, 6]. Furthermore, in very many cases of
practical relevance nanostructured systems are subjected to
deformations (either intentional or accidental) with respect to
their reference (i.e. ideally underformed) state and, therefore,

the physical properties of interest are those of a strained, rather
than pristine, system. It is then very important to develop
concepts, formal devices and numerical tools to properly model
the elastic features of such complex nanosystems. This review
is precisely addressed to this issue.

To a great extent, just few key words are needed to
focus the above topics, namely, nonlinear elastic effects and
nanoscale structural features. While the first one addresses
the physical properties to be considered, the second defines
the actual atomic architecture of the specific nanosystem of
interest. These two features are tightly entangled and both are
underpinned by a third important notion, namely, the possible
onset of length-scale effects. Therefore, before developing
any formal treatment of nonlinear elasticity in nanostructured
materials, the concept of elastic nonlinearity is deserving
of further elaboration, together with the concept of elastic
constitutive equation and the notion of length scale.

1.1. The concept of elastic nonlinearity

The starting point of elasticity theory is that materials subjected
to loads undergo deformations. This rather intuitive statement
is phenomenologically grounded on robust empirical evidence
and formally described by the mathematical concepts of stress
(profiling loads) and strain (profiling deformations). The full
characterization of the elastic behavior of a deformed material
is provided by its constitutive equation, namely by a material-
specific stress–strain relationship.

The concept of nonlinearity can be introduced in elasticity
in two different ways [7, 8]. On the one hand, nonlinear
elastic features are exploited by means of the complete (i.e. not
approximated) strain–stress relation and the exact equilibrium
equations for any given material volume element. This
approach is needed when considering large deformations [9,
10] and it is referred to as geometrical nonlinearity. Its formal
description is typically based on unspecific balance equations
of general validity. The inherently nonlinear character
of finite elasticity makes such a theory a nontrivial one,
containing several mathematical and conceptual subtleties.
On the other hand, nonlinear elastic features occur even
under the approximation of small deformations, a situation of
considerable practical relevance, whenever the material stress–
strain constitutive relation is not Hookean or, equivalently, is
not linear. This case is referred to as material nonlinearity
(sometimes called physical nonlinearity), since it is related to
the actual physical regime of elastic response of the specific
material under consideration.

By exploiting the twofold definition of elastic nonlinearity,
we can make a distinction between four different types of
problems [8], by combining linear (L) or nonlinear (NL)
features either for the material response regime (i.e. Hookean
versus nonlinear) or referring to the corresponding geometrical
deformation (i.e. small versus large deformations). The
following enumeration will be used throughout this review:
problems characterized by a Hookean elastic response regime
and small deformations will be labeled as L–L problems;
problems where the material response regime is nonlinear,
but deformations are nevertheless small will be referred to as
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NL–L problems; problems in the Hookean response regime, but
where deformations are large will be named L–NL problems;
finally, the last possible combination of nonlinear material
response with large deformations will define the NL–NL
problems.

L–L problems are the subject of the classical theory of
elasticity (small deformations in Hookean materials) [7, 11].
Within this formalism the main results of solid mechanics
have been developed, namely, the classical theory of wave
propagation [12], fracture mechanics [13], the continuum
theory of dislocations [14] and the Eshelby theory for the
elastic behavior of linear inhomogeneities [15, 16]. In L–L
problems (as well as in NL–L ones) the angles of rotation can be
neglected in determining the resulting length variations of the
line elements upon loading and in formulating the conditions
of equilibrium for volume elements. The balance equations are
based on the standard small-strain tensor and on the Cauchy
stress tensor. However, in NL–L problems the Hookean
limit of proportionality between stress and strain is exceeded,
thus requiring the use of a nonlinear stress–strain constitutive
equation. This conceptual framework is intended to model any
perfectly reversible nonlinear stress–strain behavior, but it is
restricted to infinitesimal strains [17, 18].

In this review we will address the material nonlinear
elastic regime, while avoiding problems where deformations
are large. In particular, we will focus on NL–L problems by
considering several prototypical configurations of paramount
relevance in the modern materials science of nanostructured
systems. We note that the more general theory of L–NL and
NL–NL problems falls beyond the scope of this work, since
they require an explicit formulation of finite elasticity, based on
the balance equations (for mass distribution, linear momentum
and angular momentum) within the Euler (spatial) and the
Lagrangian (material) description. Such topics are addressed
elsewhere [7, 8].

1.2. The concept of a constitutive equation

The application of the principles of mechanics to bulk matter
is conventionally divided into the mechanics of fluids and
the mechanics of solids. The entire subject is often referred
to as continuum mechanics [9], assuming that matter be
continuously divisible, i.e. making no reference to its atomistic
(and, therefore, discrete) structure. This will be hereafter
referred to as the continuum picture.

Solid mechanics is concerned with the stressing,
deformation and failure of solid materials and structures.
We call a material solid provided that it can support a
substantial shearing force, in addition to supporting normal
ones (incidentally, we note that only the second feature is
equally found in liquids). Shearing (normal) forces are parallel
(perpendicular) to the material surface on which they act;
the force per unit of area is called shear (normal) stress.
Therefore, in the elasticity theory of solids we need constitutive
equations describing both normal and shear stresses. More
specifically, a constitutive equation is a direct relationship
(linear or nonlinear) between stress and deformation.

Materials behave very differently upon loading. In the
simple (but very common) case when a material is loaded by

a sufficiently small stress, its deformation is fully recovered
upon unloading. We then say that the material is elastic.
However, some solids can also be deformed permanently
or, equivalently, sometimes deformations are only partially
recovered upon unloading. In this more general case we
describe the permanent deformation as a plastic one and
we name the material elastic–plastic. Those permanent
deformations which strongly depend on the time of exposure to
a stress (and typically increase with time of exposure) are called
viscous (or creep) deformations. Materials which exhibit this
behavior (as well as an elastic response) are called viscoelastic
solids (or sometimes viscoplastic solids, when we focus more
on the permanent deformations than on the partial recovery of
strain upon unloading).

The constitutive stress–strain equation must match
the specific observed behavior. Typically, they are
determined by experiments and eventually conceptualized in
phenomenological equations such as the simple Hooke law
describing a linear stress–strain relationship. A variety of
mechanical testing machines and geometrical configurations
of material specimens have been devised to characterize their
behavior [19]. These allow simple tensile, compressive or
shear stressing; sometimes they can also apply combined
stressing with several different components of stress. The
material response over a range of temperature, strain rate
and loading history can therefore be measured and fully
characterized [19]. In this review we are only concerned with
fully recoverable strains and, therefore, we will consider purely
elastic (but generally non-Hookean) materials. Moreover, for
simplicity, the undeformed state will be always taken to be
stress free. We note that the theory of plastic materials is a
fascinating and wide topic, beyond the scope of this review. A
good introduction to plasticity can be found elsewhere [20].

A different perspective on the stress–strain relation is
offered by the modern atomistic theory of materials where,
actually, there is no need to define a macroscopic constitutive
equation. Rather, materials properties are determined by
many-body interactions among their elementary constituents
(i.e. atoms or molecules) [21, 22], while their observed
behavior upon loading is worked out by the collective response
of very many particles to imposed strain or stress fields.
In other words, the chemical composition (i.e. the basic
information about many-body interactions among elementary
constituents) combined with the proper information about
the atomic architecture (i.e. the disposition of the atoms
or molecules in the space) completely characterize the
elastic response to an arbitrary loading condition. Although
most materials are properly described only by many-body
interactions, selected materials can be approximately treated
by pair-wise interactions (such as the Lennard-Jones potential).
Nevertheless, we note that the two-body interactions are not
sufficient to fully describe the arbitrary mechanical behavior of
a solid body. In other words, as extensively discussed below,
we can say that at least three-body interactions are mandatory
to reproduce the complex mechanical behavior of real isotropic
materials accurately [11, 22].
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1.3. The notion of length scale

The basic parameter characterizing the distribution of atoms
within any material is the interatomic distance, which is the
linear distance between two next-neighboring atoms. The
continuum picture is meaningful provided that stress and strain
fields occur over space regions much larger than the interatomic
distance: this is typical of the macroscopic engineering
description of materials elasticity [19].

Nanomaterials are indeed characterized by structures
varying at a length scale only slightly larger than the
interatomic distance. Despite this, the continuum picture
has been widely, and indeed very successfully, applied to
investigating many elastic features of such systems. The
reason is that elasticity theory is a very robust theoretical
tool of general validity and applicability (even beyond to what
expected according to its initial assumptions). For example,
the elastic behavior of heterogeneities larger than about
10 nm (see section 4.2) can be easily captured by continuum
mechanics. However, there are many other difficulties,
both conceptual and practical, in fully characterizing elastic
phenomena at the atomic scale with conventional continuum
mechanics. A paradigmatic example is provided by brittle
fracture: by linear elastic fracture mechanics (LEFM) it is
indeed possible to predict the stress and strain fields near a
crack, but it is not possible to evaluate the exact atomic behavior
at the crack tip where molecular and chemical phenomena
represent the most important features. More precisely, LEFM
predicts an infinite enhancement of the stress at the tips of
the crack with vanishingly small thickness (slit crack). We
note that this nonphysical result is only due to the underlying
continuum hypothesis, whereas it does not apply provided that
the atomic structure of the real material is properly taken into
account (as a matter of fact, it is easy to figure out that, in
atomic lattices, the minimum radius of curvature of a crack is
approximately of the order of the interatomic distance).

Anyway, the standard elasticity theory provides the most
general conceptual framework to elaborate new understanding.
In fact, it can be used for (i) inspiring new modelling
methodologies; (ii) properly defining border conditions for
a generic system under load; (iii) and for comparing the
atomistic predictions with their continuum counterparts within
a multiscale perspective. As stated above, some care should
be taken when the system size scales down and the possible
onset of length-scale effects is likely to occur. This can
be illustrated by the following example, which is one of
the central points of this work. Most of the continuum
investigations on heterogeneous systems are elaborated by
means of a rather simple paradigmatic model system, named
the Eshelby configuration [23–25], which consists of a single
inhomogeneity embedded in a given homogeneous matrix.
The results holding for such a simple configuration can,
in fact, be generalized to a dispersion of inhomogeneities
(but only in the dilute limit), approaching the more realistic
case of a nanocomposite system. The main result of the
Eshelby model (and, therefore, the key feature of the resulting
continuum predictions) is that elastic fields within and near
the inhomogeneity do not depend upon the size of the
inhomogeneity itself. For instance, the elastic fields induced

by a spherical inhomogeneity (such as a hard inclusion in
a ceramic matrix or a void within a homogeneous material)
do not depend on its radius. Basically, this defines the
very striking feature according to which elastic features in
nanostructured systems should be length-scale invariant.

This result is counter-intuitive and unlikely. However,
there is no way to go beyond it still using the continuum
approach. Rather, a different approach should be usefully
adopted, more advisedly based on condensed matter theories
so as to explicitly take into consideration atomistic features.
In this respect, the application of atomistic simulations are
better suited to provide the relevant elastic fields directly
onto the discrete lattice of atoms defining the nanomaterial.
This approach naturally drives the full characterization of
the possible dependence of elastic fields outside, inside or
near inclusions depending upon their dimensions, the loading
conditions and any possible interface-specific feature.

1.4. The continuum versus the atomistic picture

To a great extent the boundary between continuum and
atomistic approaches lies at the nanometer length scale. At
this scale matter can hardly be described by a continuous
mass distribution, thus questioning the overall validity of the
continuum picture, as discussed above. On the other hand,
however, typical atomistic models are over-rich in terms of
physical information, as far as the mere description of elastic
properties is concerned. Therefore, their straightforward
application could require an exceedingly large computational
workload. Interestingly enough, the above boundary does
represent the core of modern nanotechnology [5, 6].

Since both continuum and atomistic pictures have
advantages and drawbacks, a dilemma follows, namely, which
is the best approach when interested in modeling elastic
features of nanostructured materials. Currently, the better
answer affirms that neither of them is definitely superior
and, as a matter of fact, both are indeed necessary in order
to elaborate a full meaningful picture. This has driven the
scientific community to elaborate the concept of multiscale
modeling, namely, the idea according to which continuum and
atomistics can be blended together hierarchically, concurrently
or by the quasi-continuum scheme [26–29]. However,
although many achievements have been made by multiscale
methods, we are still quite far from a general, robust
and transferable formulation. As a matter of fact, several
open problems are still challenging researchers, including
conceptual problems in defining the relevant mathematical
objects near the continuum/atomistic boundary (such as stress
force and elastic fields) and numerical instability problems
(for instance, fully reversible mesh refinement or elastic
wave reflection). At the present time, multiscale methods,
although very promising in perspective, cannot be considered
a mature computational tool for the predictive modeling of
nanostructured systems.

In this work we follow a different approach by giving
privilege to continuum elasticity, in recognition of its
paradigmatic validity, reserving to atomistic simulations a
subsidiary role. More specifically, for any problem discussed
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in the following sections, a continuum picture is at first
elaborated and a corresponding elastic model is formally
developed. When feasible, such a model is directly solved to
get physical insight of the problem. Alternatively, the elastic
continuum model is used to define the protocol for suitable
atomistic simulations. Such simulations are eventually used
to actually calculate all the relevant quantities (such as
linear and nonlinear elastic moduli) previously defined by the
continuum approach and to search for any possible occurrence
of phenomena that fall out of reach of methods describing
materials as a continuous mass distribution. According to this
perspective, the continuum formalism will play the major role
and, therefore, it will be carefully outlined.

1.5. Synopsis of open problems in nonlinear elasticity of
nanostructured materials

Most of the open problems in the elasticity of nanostructured
materials or systems involve, in some way or another, either
length-scale issues and/or nonlinear features.

One active field of research deals with the evaluation of the
possible scale effects in the elastic behavior of an embedded
nanoinhomogeneity. In particular, it is important to understand
the behavior of the elastic fields versus a typical measure of the
inhomogeneity (such as the radius for a spherical/cylindrical
particle or the axes for an ellipsoidal one) as well as versus
its shape. From the point of view of the classical theory of
elasticity such elastic fields should not depend on the size, but
only on the shape [15, 16]. When the size is nanoscopic this
result is no more valid and scale effects can be generated by
volume, as well as surface features. In the first case the major
role is played by the actual spatial distribution of atoms. On
the other hand, the embedding of a given inhomogeneity in a
hosting homogeneous matrix is deeply affected by the lattice
mismatch and by the possible differences (in shape and size)
between the external surface of the particle and the internal
surface of the hosting cavity. Both the inclusion and the matrix
must accomplish an elastic relaxation to accommodate such a
mismatch and, therefore, they admit a state of deformation
even if no external load is applied. The possible length-
scale effects exhibited by a single inhomogeneity can be
reflected in the effective behavior of a composite material
formed by a dispersion of nanoparticles in a given matrix.
In many cases, imperfect interfacial bonding may exist at the
matrix/particle boundary and the interfacial bonding condition
may significantly affect the effective properties of the overall
heterogeneous structure.

Another important open problem is the so-called nonlinear
Eshelby problem. The Eshelby theory provides a fundamental
result, namely, the strain field within both a linear or a nonlinear
(ellipsoidal) inhomogeneity is uniform when the matrix is
linear [15, 16]. In these cases the complete analytical solution
is well known for all the elastic fields characterizing the
system. In this context, it is typically assumed that no bonding
failures occur at the interface when the structure is placed in
an equilibrated state of infinitesimal elastic strain. Hence, the
boundary conditions require that both the vector displacement
and the normal stress be continuous across the interface.

When the matrix is nonlinear, the continuum theory poses
a really hard problem from the mathematical point of view
and, still now, no explicit solutions have been proposed. This
suggests that a possible alternative approach could be based on
atomistic simulations. In this case a conceptual mapping of the
constitutive linear and nonlinear equations of the continuum
elasticity theory onto a lattice model is needed, exploiting the
real atomistic structure of an embedded nanoinhomogeneity.
Such a lattice model naturally introduces the notion of length
scale and, therefore, opens the possibility to investigate by
computer experiments the combination of scale effects with
nonlinear elasticity on the elastic behavior of nanostructured
materials. These effects play a major role in many complex
systems such as dispersions of inhomogeneities or buried
quantum dots [30–34], graded structures [35, 36], complex
interfaces [37–40] and nanoalloys or -composites [41–43].

Finally, nonlinear features have been recently reported
in the elastic behavior of graphene [44]. As a matter of
fact, graphene is the mother structure of any other carbon-
based nanosystem such as nanotubes, multi-sheet graphitic
layers or even fullerene molecules. Furthermore, it displays
many peculiar and intriguing physical properties, most of them
affected by in-plane strain (for instance, its zero-gap nature
and, therefore, its electron transport features [45]). There is,
in fact, a large interest in the yet to be completely explored
opportunity to control quantum transport by strain engineering
and various structural modifications. The mechanical behavior
of graphene or its derivatives is therefore very important not
only for strictly mechanical reasons but also for electronic
motivations. Bending elasticity is interesting as well (see [46]
and references therein). Finally, there is also an increasing
interest in the hydrogenation of graphene: this is a process
where added hydrogen atoms bond to the carbon atoms of the
graphene scaffold sharing their only electron. This produces
a family of two-dimensional hydrocarbons which are called
graphanes [47]: their linear and nonlinear elastic properties
affect charge transport.

1.6. Structure of the review

This paper is organized as follows.
In section 2 we provide a brief outline of the elasticity

theory within the hypothesis of small deformations. We
introduce the concepts of stress and strain and we derive the
standard balance equations of solid mechanics. This formalism
can be adopted to approach any L–L and NL–L problems
as stated in section 1.1. We will then derive the general
theory of constitutive equations in the nonlinear response
regime, corresponding to the situation previously referred to
as material nonlinearity. As already stated, this is the physical
situation describing the class of NL–L problems relevant for
applications to nanomaterials and structures.

Section 3 is addressed to some specific methodological
issues. In particular, we give a brief outline of the linear
Eshelby theory for describing the elastic behavior of an
embedded inhomogeneity and we introduce its generalization
to the nonlinear case within the NL–L formalism. Moreover,
we elaborate a fruitful discrete elastic model, based on a
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Figure 1. Reference configuration (left) and current configuration
(right) after a deformation described by �f .

conceptual mapping of the continuum elasticity onto an atomic
lattice, to be used in the following atomistic simulations.

Finally, in section 4 we review a set of applications of the
previous methodologies to some paradigmatic nanostructured
systems. Firstly, we draw a thorough comparison between
the continuum and the atomistic results for a single nonlinear
inhomogeneity. In this context, we describe a quantitative
analysis of the length-scale effects. Then, we generalize
the investigation to the case of a dispersion of nonlinear
particles embedded in a given matrix, modeling a wide class of
nanocomposite systems. We further describe the results of the
atomistic simulations for more complicated structures, such as
nanograded materials and two-dimensional atomic sheets, like
graphene and graphane.

2. Small-strain elasticity theory

2.1. Formalism

Let �x be the position vector of a material point within a solid
in the reference (or, equivalently, undeformed) configuration
and let �X be its new position in the current (or deformed)
configuration generated upon loading, both measured in the
same Cartesian coordinate system (see figure 1). Obviously,
�X will be a function of �x and, therefore, we may write

�X = �f (�x) = (f1 (�x) , f2 (�x) , f3 (�x)) , (2.1)

where the three axes have been labeled by {1, 2, 3}. We
observe that the function �f connects the vector �X with the
vector �x, being a vector field. Physically, it describes the
deformation experienced by the solid body subjected to load.
Of course, the relation �f (�x) �= �f (�y) is verified for any couple
of points �x �= �y of the reference configuration. This means
that �f is a biunivocal vector function and, therefore, the inverse
function �f −1 always exists. For the following development
we also assume that �f and �f −1 are differentiable functions.
In the theory of elastic materials the deformation gradient
F̂ = {Fij , i, j = 1, 2, 3},

Fij = ∂fi

∂xj

, (2.2)

is an important quantity. The matrix F̂ , referred to as the
Jacobian matrix of the transformation, has two important
properties: (i) it is not singular because of the invertibility of
�f (∃ F̂−1 such that F̂ F̂−1 = F̂−1F̂ = Î ); (ii) its determinant

is always strictly positive (det F > 0) [7].
Another key quantity is the displacement field �u(�x)

(between �X and �x) defined as

�X = �f (�x) = �x + �u(�x). (2.3)

Provided that the displacement vector is known, the Jacobian
matrix of the displacement Ĵ = {Jij , i, j = 1, 2, 3} can be
expressed as follows:

Jij = ∂ui

∂xj

. (2.4)

From equations (2.2) and (2.4) we easily obtain F̂ = Î + Ĵ .
We now introduce a key feature, namely, we will assume

that the strains are small or, equivalently, that F̂ is very similar
to Î or that Ĵ is very small. We adopt, as a definition of small
deformations, the relation

Tr(Ĵ Ĵ T) � 1 (2.5)

meaning that in this approximation the trace of the product
Ĵ Ĵ T is negligible. Such a hypothesis allows us to introduce
a simplified analysis of the dilatation/compression as well as
the local rotation of a small element of volume contained in a
given material body under deformation [11].

2.2. Strain

Under the hypothesis of small deformations we can introduce
the strain tensor, which is the most important tool to quantify
the deformations in elasticity theory. To this aim we observe
that the Jacobian matrix Ĵ of the displacement can be written
as the sum of a symmetric part and a skew-symmetric
(emisymmetric) part as follows:

Jij = 1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
︸ ︷︷ ︸

symmetric tensor

+
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
︸ ︷︷ ︸
skew-symmetric tensor

= εij + �ij , (2.6)

where we have defined the tensors

εij = 1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.7)

�ij = 1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
(2.8)

with the symmetry properties εij = εji and �ij = −�ji . The
quantity ε̂ = {εij } is called the infinitesimal strain tensor or
small-strain tensor and the quantity �̂ = {�ij } is the local
rotation tensor [18]. Such a decomposition is useful to obtain
the three following very important properties of the small-
strain tensor.

6
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(i) We note that for a pure local rotation (a volume element
is rotated, but not changed in shape and size), we have
Ĵ = �̂ and, therefore, ε̂ = 0. This means that the small-
strain tensor does not take into account any local rotation,
but only the changes in shape and size (dilatations or
compressions) of that element of volume [11]. We stress
that the local rotation of a volume element within a body
cannot be correlated with any arbitrary force exerted in
that region (the forces are correlated with ε̂ and not with
�̂): for this reason the infinitesimal strain tensor is the only
relevant object for the analysis of the deformation due to
applied loads in the small-strain elasticity theory [7].

(ii) The infinitesimal strain tensor allows for the determination
of the length variation of any vector from the reference to
the current configuration. By defining εnn as the relative
length variation in direction �n, we have

εnn = �n · ε̂�n. (2.9)

If �n is a unit vector of any axis of the adopted Cartesian
frame of reference, it is straightforward to attribute a
geometrical meaning to the components ε11, ε22, ε33 of the
strain tensor. Since εnn = �ei · (ε̂ �ei) = εii , they describe
the relative length variations along the three Cartesian
axes [18].

(iii) The infinitesimal strain tensor allows for the determination
of the angle variation between any two vectors from the
reference to the current configuration. The variation of
the angle defined by the two orthogonal directions �n and
�t can be obtained from

γnt = 2�n · ε̂�t . (2.10)

The present result is also useful for providing a direct
geometrical interpretation of the components ε12, ε23 and
ε13 of the infinitesimal strain tensor. As an example, we
take into consideration the component ε12 and we assume
that �n = �e1 and �t = �e2. The quantity γnt represents the
variation of a right angle on the plane (x1, x2). Since
ε12 = �e1 · (ε̂ �e2), we easily obtain the relationship
γnt = 2ε12 = (∂u1/∂x2) + (∂u2/∂x1) [18].

It is also possible to obtain global relations describing
the variation of the measure of lines, surfaces and volumes
contained in the elastic body. The variation of volume of a
subregion V of the body subjected to a strain ε̂ is given by the
following relation:


V =
∫
V

Tr(ε̂)dV. (2.11)

The variation of area of a surface S (with normal unit vector
�n) under strain ε̂ can be written as


S =
∫
S

[
Tr(ε̂) − �n · (ε̂ �n)

]
dS. (2.12)

Finally, the variation of length of a line γ (with tangent unit
vector �t) subjected to a deformation described by ε̂ is given by
the relation


L =
∫

γ

�t · (ε̂�t)dl. (2.13)

2.3. Stress

In continuum elasticity we must consider two systems of forces
acting on a given region of a material [7, 9, 10], namely, body
forces and surface forces. The first ones are due to the external
fields acting on the body and they are described by the vector
field �b(�x), representing their volume density in the current
configuration. The physical meaning of such a density of
forces can be summed up stating that the total force d �Fv applied
to a small volume d�x centered on the point �x is given by
d �Fv = �b(�x)d�x. In turn, surface forces are due to the interaction
between two neighboring portions of any deformable material
across their common surface. At a fundamental level, such an
interaction originates from a set of interatomic forces; within
the continuum picture, however, it is assumed that the net
resulting force is adequately represented by a single vector
field defined over the surface.

It is useful to introduce the following notation for the
surface force d �Fs applied to the area element ds (with unit
normal vector �n) of the deformed configuration:

d �Fs = �F (�x, �n, t) ds, (2.14)

where �F assumes the meaning of a density of forces distributed
over the surface. According to the Cauchy theorem, a stress
tensor T̂ exists (hereafter referred to as Cauchy stress tensor)
describing the distribution of the surface forces [7, 48] such that

�F (�x, �n, t) = T̂ (�x, t)�n. (2.15)

2.4. Balance equations

The mathematical objects introduced in the previous sections
must be linked by means of a set of equations representing
the formal structure of the theory of elasticity. The first two
important equations can be derived by the principles of linear
and angular momentum [7, 48]. When dealing with a system
of particles, we can deduce from Newton’s laws of motion that
the result of the external forces is equal to the rate of change in
the total linear momentum of the system. By taking moments
about a fixed point, we can also show that the resultant moment
of the external forces is equal to the rate of change in the total
moment of momentum. Here we define the linear and angular
momentum density for a continuum medium and we introduce
balance laws for these quantities. We consider a portion V in a
material body and we define �P as its linear momentum, �F as the
result of the applied forces, �L as the total angular momentum
and, finally, �M as the resultant moment of the applied forces.
For a system of particles the above mechanical principles can
be written as follows [49]:

d �P
dt

= �F,
d �L
dt

= �M. (2.16)

We start with the first principle, applied to the portion of body
contained to the region V, limited by the closed surface S

d

dt

∫
V
ρ

∂uj

∂t
dV =

∫
S
TjinidS +

∫
V
bj dV, (2.17)

7
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where we have used the decomposition of the forces as
described in the previous section. We remember that uj is the
j th component of the displacement field. The mass density
ρ is assumed to be constant under the small deformation
assumption. The previous equation can be simplified by means
of the Gauss divergence theorem, by obtaining

d

dt

∫
V
ρ

∂uj

∂t
dV =

∫
V

∂Tji

∂xi

dV +
∫
V
bj dV. (2.18)

Since the volume V is arbitrary, we easily obtain the first
balance equation for the elasticity theory

∂Tji

∂xi

+ bj = ρ
∂2uj

∂t2
. (2.19)

We now turn to the principle of the angular momentum. For
the region V such a balance equation can be written in the
following form:

d

dt

∫
V

�x × ∂ �u
∂t

ρdV =
∫
S

�x ×
(
T̂ �n

)
dS +

∫
V

�x × �b dV. (2.20)

As before, the surface integral can be simplified with the
application of the Gauss divergence theorem, by obtaining,
after some straightforward algebra,∫
S

�x × (T̂ �n)dS =
∫
V

[
Tkh + xh

∂Tkp

∂xp

]
ηhkj �ej dV. (2.21)

Hence, the second balance equation can be cast in the form∫
V

{
xh

[
∂2uk

∂t2
ρ − ∂Tkp

∂xp

− bk

]
− Tkh

}
ηhkj �ej dV = 0. (2.22)

The term in the bracket is zero because of the first balance
equation and we obtain

∫
V Tkhηhkj �ej dV = 0 or, equivalently,

Tkhηhkj = 0. The second principle therefore eventually
leads to

Tij = Tji (2.23)

assuring the symmetry of the stress tensor.

2.5. Nonlinear constitutive equations

The results obtained in the previous section hold for most
materials, regardless of their constitution. However, in order to
obtain a complete system of equations predicting the material-
specific deformation upon stress/strain, we need to introduce
the constitutive equations, which characterize the actual elastic
behaviour of the investigated system [17, 19]. These equations
must be written as a relationship between the components of
the stress and the strain

Tij = f ({εij }). (2.24)

Equation (2.24) assumes a direct correspondence between
stress and strain at any point of the material. In general, the
arbitrary constitutive equation of an elastic material can be
derived by the strain energy function U(ε̂) as [11]

Tij = ∂U(ε̂)

∂εij

. (2.25)

It means that an arbitrarily nonlinear constitutive equation can
be always written by means of derivatives of the strain energy
function [7]: therefore, the strain energy function contains the
complete information about the nonlinear elastic response of
a given material.

Since equation (2.25) is the most important equation in
the theory of nonlinear elastic constitutive equations, we give
here a brief outline of its derivation. Let us suppose that a
body is subjected to a deformation from configuration A to
configuration B. Such a deformation is due to forces which
are either internal (due to atomic interactions) or external (due
to some external field describing a physical action on the
body). Condensed matter theory warrants that internal forces
are conservative, a condition that in general is not guaranteed
for external ones. Summing up the two contributions, we
obtain an energy balance between the configurations A and
B in the form[

Up(B) + Ec(B)
] − [

Up(A) + Ec(A)
] = Lext, (2.26)

where Lext is the work done by the external forces, the potential
energy Up takes into account the internal forces and Ec is the
kinetic energy of a given configuration. As before we consider
a volume V limited by a surface S. We begin by calculating
the work done by the external forces. It can be written as the
sum Lext = Lext(V) + Lext(S), where the first term represents
the work done by the body forces �b(�x, t) and the second one
represents the work done by the forces Tij (�x, t)nj , applied on
the external surface. The term Lext(V) can be written in the
form of a time and volume integral of the applied power (force
by velocity), as follows:

Lext(V) =
∫
V

[∫ t (B)

t (A)

�b · ∂ �u
∂t

dt

]
dV, (2.27)

where t (A) and t (B) are the initial and the final instant,
respectively. Similarly, for the work made on the surface S
we obtain

Lext(S) =
∫
S

[∫ t (B)

t (A)

Tijnj

∂ui

∂t
dt

]
dS

=
∫
V

[∫ t (B)

t (A)

∂

∂xj

(
Tij

∂ui

∂t

)
dt

]
dV

=
∫
V

[∫ t (B)

t (A)

(
∂Tij

∂xj

∂ui

∂t
+ Tij

∂εij

∂t

)
dt

]
dV, (2.28)

where we have used the divergence theorem and the symmetry
of the stress tensor (see equation (2.23)). Therefore, the total
external work is

Lext =
∫
V

{∫ t (B)

t (A)

[(
∂Tij

∂xj

+ bi

)
∂ui

∂t
+ Tij

∂εij

∂t

]
dt

}
dV.

(2.29)
Using the motion equation given in equation (2.19), we obtain

Lext =
∫
V

{∫ t (B)

t (A)

[
ρ

∂2ui

∂t2

∂ui

∂t
+ Tij

∂εij

∂t

]
dt

}
dV

=
∫
V

{∫ t (B)

t (A)

[
1

2
ρ

∂

∂t

(
∂ui

∂t

∂ui

∂t

)
+ Tij

∂εij

∂t

]
dt

}
dV

= 1

2

∫
V

{[
ρv2

B − ρv2
A

]}
dV +

∫
V

∫ t (B)

t (A)

Tij

dεij

∂t
dt dV,

(2.30)
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where v2
A = ((∂ui/∂t)(∂ui/∂t))A and v2

B = ((∂ui/∂t)

(∂ui/∂t))B are the scalar velocity fields inside the body in
the initial and final configurations, respectively. Since the
variation of the kinetic energy can be written as


Ec = 1

2

∫
V
ρv2

BdV − 1

2

∫
V
ρv2

AdV (2.31)

we easily derive, by means of equation (2.26), the total
variation of the elastic potential energy between the initial and
the final configurations


Up =
∫
V

∫ t (B)

t (A)

Tij

∂εij

∂t
dt dV. (2.32)

By introducing the volume energy density

Up =
∫
V
UdV (2.33)

we obtain


Up =
∫
V

∫ t (B)

t (A)

∂U

∂t
dt dV. (2.34)

It must be underlined that in equations (2.33) and (2.34) we
have implicitly accepted the existence of the energy density
as a thermodynamic state variable: however, this assumption
is consistent with the basic thermodynamic principles. By
drawing a comparison between equations (2.32) and (2.34) we
obtain (∂U/∂t) = Tij (∂εij /∂t), which represents the rate of
change in the energy density in terms of the strain and the
stress tensors. If we write the same equation with explicit
arguments (dU({εkh})/dt) = Tij ({εkh})(dεij /dt) we easily
understand that the function U is an exact form which proves
equation (2.25), as anticipated.

For the particular case of a nonlinear isotropic material the
strain energy function U must depend only upon the invariants
of the strain tensor [48]. A constitutive equation may be
developed in power series with respect to the components
of ε̂ (note that everywhere in this review we understand that
repeated indices are saturated)

U(ε̂) = 1
2Cijkhεij εkh + 1

6Cijkhnmεij εkhεnm + · · · . (2.35)

Here the Cijkh and the Cijkhnm denote the second-order
elastic constants (SEOCs) and the third-order elastic
constants (TOECs), respectively (within the small-strain tensor
approximation) [17, 18]. Higher order elastic constants are
found when expanding equation (2.35) above the third order.
Although defined in a formally clean way, higher order elastic
constants cannot be provided with a direct and intuitive
physical meaning and, therefore, are rarely used. Moreover,
their effects are typically negligible within a small-strain
regime. In the following we will adopt the compact Voigt
notation and, therefore, we will use the symbol Cpq for SOECs
and Cpql for TOECs, according to the standard correspondence
rule: p = 1 → (i, j) = (1, 1); p = 2 → (i, j) = (2, 2);
p = 3 → (i, j) = (3, 3); p = 4 → (i, j) = (2, 3);
p = 5 → (i, j) = (1, 3); p = 6 → (i, j) = (1, 2).

As a particular case of equation (2.35), the linear stress-
strain constitutive equation is called the generalized Hooke’s
law [17, 18]:

Tij = Cijkhεkh, (2.36)

where Cijkh are constants (for homogeneous materials).
Equation (2.36) is of general validity, including all the possible
crystalline symmetry or, in other words, any kind of anisotropy.
The tensor of the elastic constants appearing in equation (2.36)
satisfies three symmetry properties, determined by general
thermodynamics arguments, as well as by the symmetry of
the stress and strain tensors: (i) it is symmetric in the first pair
of indices, namely, Cijkh = Cjikh; (ii) it is symmetric in the last
pair of indices, namely, Cijkh = Cijhk , and (iii) it is symmetric
by exchanging the first pair and the second pair of indices,
namely, Cijkh = Ckhij [17, 18]. Because of such properties,
Cijkh has at most 21 independent components. It follows that
the energy density can be placed in a very simple form

U = 1
2Cijkhεij εkh. (2.37)

In the case of a linear and isotropic material it can be
proved that the constitutive equation has the form [17, 18]

T̂ = E3D

1 + ν3D
ε̂ +

ν3DE3D

(1 + ν3D)(1 − 2ν3D)
Î Tr(ε̂)

= 2µε̂ + λÎTr(ε̂), (2.38)

where just two elastic moduli appear. In equation (2.38) we
made use of two different pairs of moduli, namely, the Lamé
coefficients µ and λ, or Young’s modulus E3D and Poisson’s
ratio ν3D (we use the symbols E3D and ν3D since E and ν will
be used in the following for the two-dimensional case). They
are related as follows:

µ = E3D

2(1 + ν3D)
, λ = ν3DE3D

(1 + ν3D)(1 − 2ν3D)
. (2.39)

Another extensively used linear elastic coefficient is the so-
called bulk modulus K defined as K = λ + 2µ/3. The
stress–strain relation under the hydrostatic condition can be
summarized as ε̂ = (1/3K)σ Î , where σ represents the
(scalar) pressure applied to the system. The further relation
Tr(ε̂) = (σ/K) has an important physical meaning because it
describes the local volumetric variation under the assumption
of hydrostatic stress.

The strain energy function given in equation (2.37) can
be further simplified when the material is linear, isotropic and
homogeneous. Indeed, it assumes the very compact form [17]

U(ε̂) = 1
2Tij εij = µεij εij + 1

2λεkkεii , (2.40)

where we have made use of the Lamé coefficients. Since
εkk = εii = Tr(ε̂) and εij εij = Tr(ε̂2) we obtain the
tensor form

U(ε̂) = µTr(ε̂2) + 1
2λ

[
Tr(ε̂)

]2
(2.41)

which represents the elastic energy density for an isotropic
material.

For an elastic solid body at equilibrium, i.e. for εij = 0
∀i, j , the function U(ε̂) must exhibit a minimum (i.e. the
equilibrium configuration is stable). Because U(ε̂ = 0) = 0,
we conclude that the quadratic form defined in equations (2.37)
or (2.41) is positive definite. In other words, we have proved
that the stiffness tensor is always positive definite for real
materials. The specific conditions assuring a positive definite
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energy density for an isotropic material are µ > 0 and
3λ + 2µ > 0. By means of standard conversions we obtain the
additional relations K > 0 and E3D > 0. Finally, by means of
the expression ν3D = ((3K − 2µ)/(2(3K +µ))) we can easily
prove that −1 < ν3D < 1

2 . It is interesting to observe that the
last result admits negative values for Poisson’s ratio.

All results of the standard elasticity theory are scale-
invariant, i.e. no scale effects can occur within such a theory
which does not include any information about internal length
scales. It is nevertheless in principle possible to introduce
additional features able to treat such scale effects, such as is
typically done in integral nonlocal or gradient theories where
one (or more) intrinsic length scale(s) is, in fact, explicitly
included. Their predictions match those of local continuum
theories when the specimen size is much larger than the internal
length scale. Briefly, in nonlocal elasticity the algebraic
constitutive equations are replaced by integral equations where
the stress (or strain) at a given point depends on the strain
(or stress) at that point as well as at all neighboring points in
the material [50]. More precisely, the constitutive equation is
expressed in terms of a nonlocal kernel introduced to account
for the effect of long-range interatomic forces. The stress at
a given point is a function of the strain at all points in the
body, through a weighting kernel. Under certain conditions,
an approximation to the true nonlocal material behavior can
be mimicked by the so-called strain gradient elasticity. Such
a theory takes into account strain gradient contributions in
the energy function [51]. Neglecting such terms can lead to
artefacts, such as underestimating the stress or size-dependent
behaviors in small-scale structures. The major difference
between the strain gradient theory and the conventional elastic
theory is that the strain energy density U depends on both
the conventional strain (the symmetric part of the first-order
deformation gradient) and on the second-order deformation
gradient ηijk = ∂2uk/∂xi∂xj [52]. While the strain tensor
has six independent symmetric components, the second-order
deformation gradient tensor has 18 independent components
that are symmetric in the first two indices. The common feature
of all nonlocal formulations is the elimination of stress field
singularities. For instance, the gradient elasticity solutions
show no singularity in both stress and strain fields at the core of
dislocations or crack tips in fracture mechanics. Furthermore,
the strain energy is finite at sites where local elasticity predicts
stress singularities and infinite strain energy density. More
advanced discussions, based on nonclassical or multipolar
continuum theories, can be found elsewhere [53].

3. Methods

The goal of this section is twofold: to set up the general
continuum device to cope with an embedded inhomogeneity
(section 3.1), the starting point to model nanostructured
systems, within the general framework of the Eshelby theory;
and to elaborate the concept of constitutive force field, to be
used in atomistic simulations (section 3.2).

Figure 2. Schematic representation of an inclusion (left) and an
inhomogeneity (right) of volume �, embedded in a matrix. The
inclusion, inhomogeneity and matrix are, respectively, characterized
by the stiffness tensor Ĉ(1), Ĉ(2) and Ĉ(1). ε̂∗ is the eigenstrain (or
stress-free strain) given a priori in the inclusion (see text).

3.1. The Eshelby theory

We are going to outline the continuum formalism by
investigating the elastic behavior of the Eshelby configuration
(see figure 2, right), namely, an ellipsoidal inhomogeneity
embedded in a homogeneous matrix subjected to a remotely
applied external loading [15, 16]. We aim at calculating
general expressions for the elastic stress and strain fields both
inside and the outside the ellipsoidal particle for any loading
condition and for any elastic contrast between the two media.

3.1.1. The concept of inclusion. Let us consider at first an
infinite linear elastic medium with stiffness tensor Ĉ(1) and
let us define an embedded ellipsoidal inclusion (figure 2, left)
as a region of volume � described by the linear constitutive
equation T̂ = Ĉ(1)(ε̂ − ε̂∗). The strain ε̂∗ is a priori given and
it is called the eigenstrain (or stress-free strain) [15]. In other
words, throughout this review we will denote as inclusion a
region containing a distribution of eigenstrain (with the same
elastic moduli as the matrix). For instance, ε̂∗ could describe
the local state of deformation generated by a variation of
temperature (i.e. a local heating) or could take into account
the strain induced by magneto-/electro-strictive effects. It is
important to note that the concept of inclusion is different from
that of inhomogeneity which instead corresponds to an the
ellipsoidal region of volume � characterized by a stiffness
tensor Ĉ(2) �= Ĉ(1) (figure 2, right).

For the linear elastic isotropic matrix the stiffness tensor
can be represented as

C(1)
ijkh = (

K1 − 2
3µ1

)
δij δkh + µ1(δikδjh + δihδjk), (3.1)

where the elastic moduli are named K1 (bulk modulus) and
µ1 (shear modulus). The displacement ui generated by the
inclusion (or, equivalently, by the eigenstrain ε̂∗) can be
evaluated in terms of the so-called harmonic potential �(�x)

and biharmonic potential �(�x) [23, 24]:

ui(�x) = ε∗
kh

[
1

8π
(
1 − ν3D,1

)�,ikh − δih

4π
�,k − δik

4π
�,h

− ν3D,1

1 − ν3D,1

δkh

4π
�,i

]
(3.2)

where ν3D,1 is the standard Poisson’s ratio of the matrix.
Hereafter we use the symbol f,i = (∂f /∂xi) and we extend
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this notation to higher order derivatives. Equation (3.2) is
valid anywhere. The harmonic potential is defined by the
Poisson equation ∇2� = −4π if �x ∈ �, 0 if �x /∈ � and
the integral form of its solution is �(�x) = ∫

�
(1/‖�r − �x‖) d�r .

Similarly, the biharmonic potential is defined by means of the
biharmonic equation ∇4� = −8π if �x ∈ �, 0 if �x /∈ � and
the standard integral representation is �(�x) = ∫

�
‖�r − �x‖ d�r

[15, 23]. Such harmonic and biharmonic potentials only
contain geometrical information about the embedded ellipsoid
(i.e. the semi-axes lengths b1, b2 and b3). The explicit form
of �(�x) and �(�x) for the elliposidal geometry is found
elsewhere [15].

The solution of the elastic problem is given in terms of the
strain tensor

εij = 1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
= Sijkh(�x)ε∗

kh (3.3)

providing the strain field everywhere in the system (i.e. both
in the matrix and within the inclusion). Here Sijkh(�x) is the
Eshelby tensor. Its form both inside and outside the inclusion
can be written by means of the elastic potentials as follows
[15, 16]:

Sijkh(�x) = 1

8π(1 − ν3D,1)
�,ijkh − ν3D,1

1 − ν3D,1

δkh

4π
�,ij

− 1

8π
(δih�,jk + δik�,jh + δjh�,ik + δjk�,ih). (3.4)

In order to distinguish between internal and external points
(with respect the inclusion), we adopt the following notation
[15, 16]:

Sijkh(�x) =
{
Sijkh if �x ∈ � (internal points),
S∞

ijkh(�x) if �x /∈ � (external points). (3.5)

Taking a different notation for the internal and the external
region is particularly efficient in order to remind us that the
internal Eshelby tensor is constant and, therefore, the internal
stress and strain are uniform tensor fields (see figure 2, left).

3.1.2. The equivalence principle. Let us now consider the
case of an inhomogeneity embedded in a matrix which is
remotely loaded by the stress T ∞

ij , as shown in figure 3.
This problem is solved by means of the Eshelby equivalence
principle [23–25] according to which the complete problem
(figure 3, left) is solved by combining the solutions of
two different simpler problems (figure 3, right). The
first one (problem A) corresponds to the application of
the remote uniform load to a simple homogeneous elastic
system with stiffness tensor C(1)

ijkh. The second configuration
(problem B) corresponds to an unloaded inclusion with a
suitable eigenstrain ε̂∗. The solution of problem A is trivial

ε
A,in
ij = ε∞

ij , ε
A,out
ij = ε∞

ij ,

T
A,in
ij = T ∞

ij , T
A,out
ij = T ∞

ij ,
(3.6)

while the solution of problem B is based on the Eshelby tensor

ε
B,in
ij = Sijkhε

∗
kh, ε

B,out
ij (�x) = S∞

ijkh(�x)ε∗
kh,

T
B,in
ij = C(1)

ijkh(ε
B,in
kh − ε∗

kh), T
B,out
ij (�x) = C(1)

ijkhS∞
khnm(�x)ε∗

nm,

(3.7)

Figure 3. Eshelby equivalence principle: the complete problem of
an inhomogeneity under loading (left) is obtained by combining a
homogeneous configuration under loading (top right, problem A)
with a simple inclusion (bottom right, problem B).

where labels A and B refer to problem A and B of figure 3, right;
labels in and out indicate, respectively, the volume � and the
outside matrix. By combining the two above equations we
eventually obtain

ε̂in = ε̂A,in + ε̂B,in = ε̂∞ + Ŝ ε̂∗,
T̂ in = T̂ A,in + T̂ B,in = Ĉ(1)ε̂∞ + Ĉ(1)(Ŝ ε̂∗ − ε̂∗).

(3.8)

We note that the constitutive relation T̂ in = Ĉ(2)ε̂in must
hold within the inhomogeneity. Therefore, the value of the
eigenstrain ε̂∗ can be derived by solving the equation obtained
by substituting equation (3.8) in T̂ in = Ĉ(2)ε̂in. The solution
is [15]

ε̂∗ = {[Î − (Ĉ(1))−1Ĉ(2)]−1 − Ŝ}−1ε̂∞. (3.9)

The internal strain and stress fields are accordingly
calculated as

ε̂in = {Î − Ŝ[Î − (Ĉ(1))−1Ĉ(2)]}−1ε̂∞, (3.10)

T̂ in = Ĉ(2){Î − Ŝ[Î − (Ĉ(1))−1Ĉ(2)]}−1ε̂∞. (3.11)

Both ε̂in and T̂ in, as anticipated before, are constant throughout
the region �. Finally, the solution for the external fields
can be obtained by combining the corresponding solutions for
problems A and B

ε̂out(�x) = ε̂A,out(�x) + ε̂B,out(�x) = ε̂∞ + Ŝ∞(�x)ε̂∗, (3.12)

T̂ out(�x) = T̂ A,out(�x) + T̂ B,out(�x) = Ĉ(1)[ε̂∞ + Ŝ∞(�x)ε̂∗].

(3.13)

The result stated in equation (3.10) is also valid for a single
anisotropic linear ellipsoid (with stiffness Ĉ(2)) embedded in an
anisotropic linear matrix (with stiffness Ĉ(1)) [23]. In this case
the Eshelby tensor Ŝ depends on both the geometry and Ĉ(1).

11
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3.1.3. The nonlinear formulation. We generalize the Eshelby
theory to the case of a nonlinear inhomogeneity (within
the NL–L formalism) described by T̂ = Ĉ(2)(ε̂)ε̂, where
Ĉ(2)(ε̂) is any strain-dependent anisotropic stiffness tensor
[54, 55]. Equivalently, nonlinear features will be described by
an arbitrary energy function U(ε̂), as given in equation (2.25).
In order to cope with this problem, we suppose we have found
a solution for the equation

ε̂in = {Î − Ŝ[Î − (Ĉ(1))−1Ĉ(2)(ε̂in)]}−1ε̂∞, (3.14)

obtained from equation (3.10). If such a solution ε̂in exists for a
given ε̂∞, then the nonlinear inhomogeneity could be replaced
by a linear one with constant stiffness Ĉ(2) = Ĉ(2)(ε̂in), with
no modifications of the elastic fields anywhere. Therefore, if
ε̂in exists, then equation (3.14) exactly describes, through self-
consistency, the elastic behavior of the nonlinear anisotropic
inhomogeneity.

The existence and uniqueness of a solution ε̂in for
equation (3.14) can be exactly proved under the sole hypothesis
of convexity for the strain energy function U(ε̂). We rearrange
equation (3.14) as follows [54, 55]:

∂

∂ε̂

{
1

2
ε̂Ĉ(1)[Ŝ−1 − Î ]ε̂ − ε̂Ĉ(1)Ŝ−1ε̂∞ + U(ε̂)

}
= 0. (3.15)

The first term represents a symmetric (because of the Betti
reciprocal theorem [11]) and positive definite (because of the
minimum potential energy principle [48]) quadratic form in
ε̂, while the second term is a linear function of ε̂ [54, 55].
Therefore, the sum of these two terms is a convex functional
with relative minimum at [Î − Ŝ]ε̂∞. If U(ε̂) is a convex
functional (with U(0) = 0) as well, the brackets in
equation (3.15) contain the sum of two convex terms: they
result in an overall convex functional with a minimal extremum
at ε̂in. Therefore, a unique solution of equation (3.14) exists
under the convexity assumption for U(ε̂) [54].

3.2. Atomistic simulations

We aim at replacing over-rich interatomic potentials, as
typically used in molecular dynamics simulations, by
suitable simplified constitutive force fields, paradigmatically
accounting for any given elastic behavior and fully exploiting
the atomistic features of condensed matter (but still conceiving
the continuum description of the relevant elastic phenomena).

We will develop this notion for two-dimensional elastic
problems. The reason for that is twofold: on the one hand, the
typical boundary conditions considered in the next sections
for several three-dimensional nanostructures actually lead to
effective two-dimensional mathematical settings; on the other
hand, the elasticity of two-dimensional atomic sheets (such as
graphene) will be a main concern in this review. In particular,
we will adopt a triangular two-dimensional lattice, since it
is the only structure which always exhibits an isotropic linear
elastic behavior and, therefore, allows us to perform a thorough
comparison between atomistic and continuum results.

3.2.1. Building a constitutive force field. If we take into
consideration a system of N interacting particles, the potential
energy Up (already introduced in section 2.5) is a function of
the vector distances {�rαβ}α,β=1,N between each pair of atoms.
For further convenience, we castUp in the form of the following
power series:

Up = U0 +
∑

K
ij

αβγ δrαβ,irγ δ,j +
∑

K
ijk

αβγ δζηrαβ,irγ δ,j rζη,k + · · ·
(3.16)

where rαβ,i (i = x, y, z) is the ith coordinate of the vector
distance between the atom α and the atom β, while U0, Kij

αβγ δ ,

K
ijk

αβγ δζη, ... and so on are constants. This function must show
a minimum at equilibrium: in the following, we will indicate
such a reference configuration as {�r 0

αβ}α,β=1,N , defined but for
an arbitrary roto-traslation of the particles system. For the sake
of simplicity, the formal expansion given in equation (3.16)
will be arrested at the third-order term in the interatomic
distance vectors.

If the system is subjected to a uniform strain field ε̂, the
vector distance between the atom α and the atom β is given by
�rαβ = �r 0

αβ +ε̂ �r 0
αβ and the corresponding strain energy density is

U(ε̂) = 1

V0
Up({�r 0

αβ + ε̂ �r 0
αβ}α,β=1,N ), (3.17)

where V0 is the volume of the reference (unstrained)
configuration (see equation (2.33)). Using equation (3.16) in
equation (3.17) and by expanding U(ε̂) in powers of ε̂, it is
easy to prove that the linear and nonlinear elastic constants
must be linear functions of the parameters K

ij

αβγ δ and K
ijk

αβγ δζη.
Therefore, it is possible to obtain any elastic behavior by
properly setting the K-parameters of the lattice model.

As a useful example, we consider a simple constitutive
force field given by harmonic springs between neighboring
atoms placed at �rα and �rβ . The corresponding pair elastic
potential energy is

U 2b
h (rαβ; κh) = 1

2κh(rαβ − r0)
2, (3.18)

where rαβ =| �rαβ |=| �rα − �rβ |, κh is the spring constant
and r0 is the equilibrium distance. The subscript h stands for
harmonic. The term U 2b is intended to mimic bond-stretching
interactions. If we expand equation (3.18) in the form of
equation (3.16), all the coefficients K

ij

αβγ δ , K
ijk

αβγ δζη, . . . will
be simply proportional to the spring constant κh. If the system
is subjected to a displacement field �u, so that �rαβ = �r 0

αβ +
�uαβ

being 
�uαβ = �u(�r0
α)− �u(�r0

β), the potential energy for the α–β

pair is

U 2b
h = 1

2κh(| �r 0
αβ + 
�uαβ | −r0)

2. (3.19)

We can expand this function in powers of �u, eventually
obtaining

U 2b
h = 1

2κh(�nαβ · 
�uαβ)2 + O(u3), (3.20)

where �nαβ = (�r0
αβ/r0). If the displacement field corresponds

to a uniform strain ε̂, it can be expressed as 
�uαβ = ε̂ �r0
αβ and

equation (3.20) assumes the form

U 2b
h = 1

2κh(�nαβ · ε̂ �r0
αβ)2 + O(ε3). (3.21)

12
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We can easily verify that the linear elastic moduli are
proportional to the potential parameter κh. Moreover, we
can see that, through the O(ε3) term in equation (3.21), the
harmonic interaction also affects the nonlinear behavior, i.e.
the nonlinear elastic constants will be proportional to κh as
well. Therefore, if we are interested in modeling a purely
linear elastic regime, we can use just the second-order term
in equation (3.20), by obtaining a corresponding ideal linear
elastic constitutive model. We name such a linearized potential
energy a linearized spring, assuming the form

U 2b
l (rαβ; κl) = LIN

[
1
2κl(rαβ − r0)

2
] = 1

2κl(�nαβ · 
�uαβ)2,

(3.22)

where we have introduced a new spring constant κl (l stands
for linear) and the linearization operator LIN .

A similar analysis can be performed on the following
three-body harmonic potential energy:

U 3b
h (θαβγ ; γh) = 1

2

γh

r0
2
(cos θαβγ − cos θ0)

2, (3.23)

which is intended to mimic bond-bending interactions. In
equation (3.23) cos θαβγ = �rαβ · �rαγ /| �rαβ || �rαγ | and θ0 is
the equilibrium angle of the 3-body interaction. In this case
we obtain

U 3b
h = 1

2

γh

r0
4

[�nαβ · 
�uαγ + �nαγ · 
�uαβ

− cos θ0(�nαβ · 
�uαβ + �nαγ · 
�uαγ )]2 + O(u3). (3.24)

Similarly to the bond-stretching case, the three-body harmonic
interaction introduces both a linear and a nonlinear contribution
to the strain energy density. Therefore, a purely linear
elastic constitutive model can be obtained by introducing the
following linearized bond-bending energy:

U 3b
l (θαβγ ; γl) = LIN

[
1

2

γl

r2
0

(cos θ − cos θ0)
2

]

= 1

2

γl

r0
4

[�nαβ · 
�uαγ + �nαγ · 
�uαβ

− cos θ0
(�nαβ · 
�uαβ + �nαγ · 
�uαγ

)]2
. (3.25)

The potential energy terms given in equations (3.18) and (3.23)
and in equations (3.22) and (3.25) are additive and their sum
actually describes the resulting elastic behavior of the system
of particles.

In order to generalize this conceptual scheme we
introduce two anharmonic terms (for two-body and three-body
interactions, respectively) as

U 2b
a (rαβ; κa) = 1

3

κa

r0

(
rαβ − r0

)3
, (3.26)

U 3b
a (θαβγ ; γa) = 1

3

γa

r2
0

(cos θαβγ − cos θ0)
3. (3.27)

The final resulting potential energy is therefore written as

Up = U0 + 1
2

∑
αβ

[U 2b
l (rαβ; κl) + U 2b

h (rαβ; κh) + U 2b
a (rαβ; κa)]

+
∑
αβγ

[U 3b
l (θαβγ ; γl) + U 3b

h (θαβγ ; γh) + U 3b
a (θαβγ ; γa)]

(3.28)

where nonlinear features are described through the harmonic
and the anharmonic contributions in the constitutive model.
Interestingly enough, equation (3.28) can be applied to any
kind of lattice.

3.2.2. Definition of the two-dimensional linear and nonlinear
elastic moduli. By considering a two-dimensional nonlinear
isotropic material, the strain energy density must depend
only on the invariants of the tensor ε̂, i.e. it must hold that
U(ε̂) = U(Tr(ε̂), Tr(ε̂2)) [48]. By limiting nonlinear features
to the third order, we can write

U(ε̂) = λ

2
Tr(ε̂)2 + µ Tr(ε̂2) + e Tr(ε̂)Tr(ε̂2) + f Tr(ε̂)3,

(3.29)

where λ and µ are the Lamé constants describing the linear
elasticity of the system, while the nonlinear behavior is
modeled by the two coefficients e and f (nonlinear Landau
moduli) [17]. The Lamé constants can be expressed in terms of
the two-dimensional Young’s modulus E and Poisson’s ratio
ν (plane strain conditions) or, equivalently, in terms of the
stiffness tensor components as

λ = νE

1 − ν2
= C12, (3.30)

µ = E

2(1 + ν)
= C11 − C12

2
= C44. (3.31)

We note that, since the system is isotropic, the Cauchy
relation 2C44 = C11 − C12 is always fulfilled. Moreover, the
coefficients e and f can be expressed in terms of the standard
third-order elastic moduli through the following relations
[56, 57]:

e = 1
4 (C111 − C112) f = 1

4 (C112 − 1
3C111). (3.32)

In conclusion, in the case of a fully isotropic medium the
nonlinear elasticity is modeled by two independent elastic
constants, namely e and f (or, equivalently, C111 and C112).

The above system is not related to any crystalline
symmetry group since all of them are characterized by an
anisotropic nonlinear elastic behavior [56]. Nevertheless, such
a fully isotropic model describes the paradigmatic Eshelby
configuration of section 3.1. From the atomistic point of view,
the most similar crystal class corresponds to a triangular planar
lattice, which exhibits an isotropic behavior in the linear elastic
regime at least. Therefore, we will develop our atomistic model
for such a lattice.

Since the strain energy function is invariant under a
rotation of π/3 about the principal axis (normal to the lattice
plane), there exist two linear moduli and three nonlinear
independent elastic coefficients hereafter named �1, �2 and
�3 [57]. It can be easily proved that

U(ε̂) = λ

2
[Tr(ε̂)]2 + µ Tr(ε̂2) + �1(εxx − εyy)

× [(εxx − εyy)
2 − 12ε2

xy] +
1

2
�2Tr(ε̂)

× [2 Tr(ε̂2) − Tr(ε̂)2] +
1

2
�3Tr(ε̂)3, (3.33)
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Table 1. Contributions to the linear and nonlinear stiffness tensor components (Cij and Cijk) and to the elastic moduli (λ, µ, �1, �2 and �3)
of the constitutive force field terms (Uα

β with α = 2b or 3b and β = l, h or a) in the case of a planar triangular lattice.

U 2b
l (r; κl) U 3b

l (θ; γl) U 2b
h (r; κh) U 3b

h (θ; γh) U 2b
a (r; κa) U 3b

a (θ; γa)

C11 +
3
√

3

4
κl +

9
√

3

8
γl +

3
√

3

4
κh +

9
√

3

8
γh 0 0

C12 +

√
3

4
κl −9

√
3

8
γl +

√
3

4
κh −9

√
3

8
γh 0 0

C111 0 0 +
9
√

3

16
κh −189

√
3

32
γh +

9
√

3

8
κa +

27
√

3

32
γa

C222 0 0 +
3
√

3

16
κh −27

√
3

32
γh +

11
√

3

8
κa −27

√
3

32
γa

C112 0 0 −5
√

3

16
κh +

117
√

3

32
γh +

3
√

3

8
κa −27

√
3

32
γa

λ +

√
3

4
κl −9

√
3

8
γl +

√
3

4
κh −9

√
3

8
γh 0 0

µ +

√
3

4
κl +

9
√

3

8
γl +

√
3

4
κh +

9
√

3

8
γh 0 0

�1 0 0 +

√
3

32
κh −27

√
3

64
γh −

√
3

48
κa +

9
√

3

64
γa

�2 0 0 +

√
3

8
κh −36

√
3

32
γh +

√
3

4
κa 0

�3 0 0 0 0 +

√
3

6
κa 0

where
�1 = 1

12 (C111 − C222), �2 = 1
4 (C222 − C112),

�3 = 1
12 (2C111 − C222 + 3C112). (3.34)

The triangular lattice shows a linear isotropic elastic behavior
(described by the Lamé coefficients λ and µ) and an anisotropic
nonlinear elastic one (described by three independent elastic
moduli �1, �2 and �3). Only in the special case with
C111 = C222 we obtain a fully isotropic system, even in the
nonlinear regime. In such an isotropic case we obtain �2 = e
and �3 − �2 = 2f, where e and f are the nonlinear elastic
constants defined in equation (3.29).

3.2.3. Mapping continuum elasticity onto an atomic lattice.
In order to build a constitutive force field for a two-dimensional
triangular lattice with any possible linear and nonlinear
features, we assume that the corresponding potential energy
is composed by two-body (U 2b) and three-body (U 3b) terms:
this is the minimal formulation required to describe bond-
stretching and bond-bending phenomena. The resulting
potential energy is given in equation (3.28). Consistently, for
a mono-component triangular lattice the linear and nonlinear
elastic moduli are reported in table 1, after cumbersome
algebra. This table must be used as follows: each elastic
constant (or modulus) appearing in the first column is
determined by adding all the entries in the corresponding row
associated with the different constitutive force field terms.
For example, the first elastic constant is given by C11 =
3
√

3
4 (κl + κh) + 9

√
3

8 (γl + γh). We also note that the isotropy
condition C44 = (C11 − C12)/2 is always satisfied.

We can also calculate the explicit form of Poisson’s ratio

ν = 1

3
− 4(γl + γh)

2(κl + κh) + 3(γl + γh)
(3.35)

and Young’s modulus

E = 2
√

3

3
(κl + κh)

[
(κl + κh) + 9

2 (γl + γh)

(κl + κh) + 3
2 (γl + γh)

]
. (3.36)

Equation (3.35) confirms the well-known result [58] that the
two-dimensional Poisson’s ratio of a system subjected to only
two-body interactions is ν = 1/3. Moreover, it is interesting
to observe that both ν and E depend only on the sums κl + κh

and γl +γh, which, therefore, govern the linear elastic behavior
of our system.

Starting from the results given in table 1, we can also
obtain the potential parameters for any observed (or just
guessed) elastic behavior. To this aim, we first note that
we have five elastic constants and six force field parameters:
therefore, we have to solve an indeterminate system of
simultaneous equations with five unknowns and six equations.
The simpler solution is given by fixing the value of one
parameter: for example, we choose to fix the value γa = 0,
which cancel out the effects of the anharmonic three-body
interaction, and we eventually obtain

κl =
√

3

3
C11 +

√
3

3
C12 +

38
√

3

9
C111 − 5

√
3C222

+
17

√
3

3
C112,

γl = 2
√

3

27
C11 − 2

√
3

9
C12 +

32
√

3

81
C111 − 4

√
3

9
C222

+
4
√

3

9
C112,

κh = −38
√

3

9
C111 + 5

√
3C222 − 17

√
3

3
C112,
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γh = −32
√

3

81
C111 +

4
√

3

9
C222 − 4

√
3

9
C112,

κa =
√

3

3
C111 −

√
3

6
C222 +

√
3

2
C112. (3.37)

These relations provide the design or the determination of the
force field parameters, given the macroscopic elastic behavior,
provided that it is, respectively, guessed or assigned.

4. Applications

4.1. Isolated inhomogeneity: continuum picture

The Eshelby theory as outlined in section 3.1 provides a
fundamental result, namely, the strain field within both a
linear [23, 24] or a nonlinear [54, 55] inhomogeneity is uniform
(when the matrix is linear). We apply such results to a two-
dimensional case with a circular inhomogeneity with linear
Lamé coefficients by µ(2) and λ(2) and nonlinear constants e
and f (see equation (3.29)). On the other hand, the linear matrix
is described by the moduli µ(1) and λ(1); ε̂(2) and ε̂∞ represent
the strain within the inhomogeneity and the remotely applied
strain, respectively. It is possible to obtain the implicit equation
for the internal field ε̂(2) (similarly to equation (4.17)) as

ε̂∞ = Aε̂(2) + BTr(ε̂(2))Î + CTr(ε̂(2))ε̂(2)

+ DTr
[
(ε̂(2))2

]
Î + ETr2

(
ε̂(2)

)
Î , (4.1)

where

A = 1 − λ(1) + 3µ(1)

2(λ(1) + 2µ(1))

(
1 − µ(2))

µ(1))

)
,

B =
2(λ(2) − λ(1)) +

(
1 − µ(2)

µ(1)

) (
λ(1) + µ(1)

)
4(λ(1) + 2µ(1))

,

C = 1

2µ(1)

λ(1) + 3µ(1)

λ(1) + 2µ(1)
e,

D = 1

2

e

λ(1) + 2µ(1)
,

E = 1

2

3f

λ(1) + 2µ(1)
− λ(1) + µ(1)

4µ(1)

e

λ(1) + 2µ(1)
(4.2)

are constant parameters. We eventually obtain the expression
of the internal strain field as

ε̂(2) = ε̂∞

A
− B

A(A + 2B)
Tr(ε̂∞)Î

+
2B(A + B)(C + D) − EA2

A2(A + 2B)3
Tr2(ε̂∞)Î

− 1

A2(A + 2B)
(CTr(ε̂∞)ε̂∞ + DTr[(ε̂∞)2]Î ). (4.3)

The applied homogeneous uniaxial elongation is described by
the strain tensor

ε̂∞ =
(

ε 0
0 0

)
, (4.4)

where ε is a scalar parameter describing the intensity of the
uniaxial deformation (see figure 4). Equation (4.3) assumes
the form

ε̂(2) =
(

εl 0
0 εt

)
=

(
LIε + LIIε2 0

0 T Iε + T IIε2

)
, (4.5)

unstrained

inhomogeneity

strained

inhomogeneity
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Figure 4. A matrix/inhomogeneity system under uniaxial loading
along the x1 direction. The resulting transverse and longitudinal
deformation of the inhomogeneity is shown, while the
corresponding strain tensor components are defined in the text.

where we have introduced the simplified notation εl =
LIε + LIIε2 and εt = T Iε + T IIε2 to indicate the
fractional elongations along the longitudinal and the transverse
directions, respectively (see figure 4). Both εl and εt are
quadratic functions of the remotely applied strain ε and the four
corresponding coefficients (LI and T I for the linear response
and LII and T II for the nonlinear one) are the key quantities of
this elastic problem. They are straightforwardly calculated as

LI = A + B

A(A + 2B)
, (4.6)

T I = −B

A(A + 2B)
, (4.7)

LII = −(C + D)(A2 + 2AB + 2B2) − EA2

A2(A + 2B)3
, (4.8)

T II = −A2(D + E) + 2B(A + B)(D − C)

A2(A + 2B)3
. (4.9)

If the inhomogeneity is linear (i.e. e = 0 and f = 0), then we
obtain LII = 0 and T II = 0 and the original linear Eshelby
result is recovered [23, 24].

The trend shown by the parameters LI, T I, LII and T II can
be usefully compared with atomistic results, as discussed in
section 4.2. Such parameters represent the linear and nonlinear
behavior of the longitudinal and transverse components of the
internal strain induced by a remote uniaxial load. Therefore,
they completely characterize the response of the system and
they are well defined both for the atomistic simulations and
for the continuum picture. By molecular dynamics simulations
we will calculate them for different combinations of matrix
and inhomogeneity. This analysis is carried out by plots
(see figures 5–11) where the parameters LI, T I, LII and T II

are represented (both for the continuum and the atomistic
approach) in terms of the elastic contrast between the matrix
and the inhomogeneity, as well as in terms of the size of the
inhomogeneity. We will be able to identify the scale effects
through the different elastic properties.
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4.2. Isolated inhomogeneity: atomistic picture

The atomistic counterpart of the isolated inhomogeneity
is developed within the constitutive force field framework
introduced in section 3.2. We set two different elastic media:
a fully isotropic linear material with C111 = C222 = C112 =
0 and an isotropic nonlinear one with C111 = C222 [59].
The linear material is described by the set of parameters
κl = K , κh = 0, κa = 0 and γi = 0 for any i = l, h, a, where
K is a constant governing the elastic stiffness. The resulting
elastic behavior is thus given by the following moduli:

C l
11 = 3

√
3

4
K, C l

12 =
√

3

4
K, C l

111 = 0,

C l
222 = 0, C l

112 = 0. (4.10)

The nonlinear material is described by setting κl = 0, κh = K ,
κa = 3

2K and γi = 0 for any i = l, h, a. Interactions are
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Figure 5. Longitudinal (LI and LII) and transverse (T I and T II)
coefficients defined in equation (4.5) for an isolated nonlinear
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therefore composed by a harmonic term (affecting both the
linear as the nonlinear elastic behavior) and by an anharmonic
term (affecting only the nonlinear features), tailored to obtain
an isotropic behavior. The resulting elastic moduli are

Cnl
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√
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4
K, Cnl

12 =
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3

4
K, Cnl

111 = 9

4

√
3K,

Cnl
222 = 9
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√
3K, Cnl

112 =
√

3

4
K. (4.11)

We have chosen the same equilibrium distance r0 =
3.4 Å and the same crystallographic orientation for both the
inhomogeneity and matrix materials. In so doing, we avoid
the formation of disordered interfaces, which can appear in
more complicated structures [60, 61]; here, we are interested
in drawing a comparison with the continuum Eshelby theory
which does not contain any information about features induced
by possible lattice mismatch. The interaction between atoms
belonging to the different phases has been described by a
linearized spring with a constant given by the geometric
mean of the stiffness of the two adjacent materials (Lorentz–
Berthelot rule [62]).

The system has been analysed for different values of the
elastic contrast between the matrix and the inhomogeneity,
defined as log2(Kmat/Kinc), where Kmat and Kinc are the
elastic stiffness parameters of the matrix and inhomogeneity,
respectively, entering in equations (4.10) and (4.11). A positive
(negative) contrast means that the matrix is stiffer (softer) than
the inhomogeneity. Moreover, all the simulations are repeated
for several values of the radius R of the inhomogeneity in order
to study the scale effects.

In the present simulations we have described the
embedded inhomogeneity by a simulation cell which is a
square box of length 120 nm. The system has been relaxed
through dumped dynamics in order to allow for the relaxation
of the internal degrees of freedom [59].
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4.2.1. Nonlinear inhomogeneity in a linear matrix. We
have modeled the inhomogeneity by the nonlinear isotropic
elastic model represented by equation (4.11) setting K = Kinc.
The matrix is described, in turn, by a linear material with
K = Kmat (see equation (4.10)) [59]. The inhomogeneity
radius is R = 10 Å and the resulting internal strain field was
found to be uniform.

In figure 5 we report the longitudinal and transverse
coefficients of equation (4.5) for several values of the elastic
contrast. As for the linear LI and T I coefficients, atomistic
data slightly differ from the continuum prediction when the
contrast is positive (i.e. when the inhomogeneity is softer than
the hosting matrix) , while for negative contrast a perfect
agreement between the two approaches is observed. As for
the nonlinear LII and T II coefficient, we found once again
a perfect agreement between atomistic and Eshelby results
under the condition that the inhomogeneity is stiffer than the
matrix (negative values of the contrast). On the other hand,
atomistic effects are present in the case of positive contrast.
We observe that the atomistic transverse nonlinear coefficient
is equal to the corresponding continuum one for any value of
the contrast. However, sizeable discrepancies have been found
for the longitudinal coefficient. The disagreement between the
continuum theory predictions and the atomistic results has been
further investigated by varying the radius of the inhomogeneity.
We have found that the two different pictures reconcile by
increasing the radius of the inhomogeneity, as shown in
figure 6. It is important to underline that the scale effects vanish
for particles with radius larger than ∼10 nm (corresponding to
∼30r0), while they are large in smaller particles. Therefore,
∼10 nm can be considered as the threshold for the onset of
scale effects. Although this quantitative result holds for the
specific case of a triangular lattice here investigated, we guess
that a similar order of magnitude for such a threshold (i.e.
tens of nanometers) holds as well for different crystals or
nanostructures.

This result suggests that L-coefficients could indeed be
affected by the actual dimension of the inhomogeneity. It is
therefore worth investigating how the longitudinal linear LI

and nonlinear LII coefficients vary as a function of R. As
shown in figure 7 atomistic data are nicely fitted by a simple
power law as

LI(R)

LI(∞)
= 1 +

a

Rα
and

LII(R)

LII(∞)
= 1 +

b

Rβ
, (4.12)

where a, b, α and β are fitting parameters. This choice implies
the relationships

log10[LI(R)/LI(∞) − 1] = log10 a − α log10 R

and

log10[LII(R)/LII(∞) − 1] = log10 b − β log10 R

and, therefore, α and β assume the meaning of an angular
coefficient when the bi-logarithmic scale is adopted as in
figure 7. In order to test if the proposed power laws are
appropriate, it is sufficient to check whether the numerical
data are represented by straight lines in the bi-logarithmic
plane. This can be done through standard statistical techniques.
We underline that the scaling exponents α and β represent a
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Figure 7. Fitting of equation (4.12) for different elastic contrast
between the matrix and the inhomogeneity.

measure of the velocity of convergence toward the macro-scale
behaviour by increasing the size R of the embedded particle.
In fact, when R → ∞ in equation (4.12) (with α > 0 and
β > 0) we obtain LI(R) = LI(∞) and LII(R) = LII(∞)

which correspond to the case of a very large inhomogeneity
without scale effects. We argue that the scaling exponent α

and β are the most important parameters describing the scale
behavior.

The numerical fits of equation (4.12) provide the same
scaling exponent α � β � 1.11 ± 0.05 for the linear and
nonlinear coefficients. It is important to note that the values
of these scaling exponents are independent of the elastic
contrast, as shown in figure 7. The above result suggests
that the linear and nonlinear behaviors of our lattice system
belong to the same universality class. In such a case with
α = β, the overall internal displacement εl fulfils a similar
simple power law εl(ε; R) = εl(ε; ∞) + 
(ε)R−α , where

(ε) = aLI(∞)ε + bLII(∞)ε2. As a consequence of such
a scaling behavior, the measurement or the computation of the
εl(ε; R̃) curve for a given value of R̃, allows direct knowledge
of the same curve for an arbitrary radius R, the latter being
simply proportional to the former:

εl(ε; R) − εl(ε; ∞)

εl(ε; R̃) − εl(ε; ∞)
=

(
R

R̃

)−α

. (4.13)

In other words, because of the relation β = α, inhomogeneities
with different radii exhibit responses to the external load which
differ only for a constant scale factor (R/R̃)−α independently
of the magnitude ε of the applied strain. These conclusions
have been proved by varying the radius oh the inhomogeneity
within the range 5–60 Å.

Present results can be compared with recent investigations
concerning the scale effects in nanostructured materials
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represent the atomic result for the longitudinal (transverse)
coefficients.

[63–70]. They are all based on the so-called interface
stress model (ISM) described by the displacement continuity
condition and by the Young–Laplace equation for the stress
behavior [71, 72]. Other models introducing scale effects are
based upon nonlocal continuum field theories [73]. In [74] the
elasticity of a nonideal surface is characterized by two intrinsic
length scales. Thus, the size-dependence of any physical
property is expected to follow a scaling law with a length
scale which is a linear combination of the above two intrinsic
length scales. This approach, based on the ISM, leads to the
scaling exponent α = 1 for the linear properties. This value
can be explained through the competition between the elastic
surface energy at the interface and the strain energy in the
bulk. Our numerically estimated value α � β � 1.11 ± 0.05
suggests that the elastic behavior of the inhomogeneity cannot
be explained just in terms of the sole competition between
surface and volume effects. Rather, we suggest that it should
be related to the discretization of the continuum equations at
the atomic scale, a feature fully exploited only in the present
lattice model, since an interface is generated by only setting
different linear and nonlinear spring constants in the internal
(inhomogeneity) and external (matrix) regions.

4.2.2. Linear inhomogeneity in a nonlinear matrix. We now
consider the case of a linear inhomogeneity embedded in a
nonlinear matrix. The elastic behavior of the inhomogeneity is
described by equation (4.10) with K = Kinc, while the matrix
is modeled according to equation (4.11) with K = Kmat [59].

In figure 8 we report the longitudinal and transverse
coefficients for several values of the elastic contrast. Even
in this case the internal strain field is found to be uniform,
although this result is not anticipated by the Eshelby theory.
By comparing figures 8 and 5, we can state that when
the inhomogeneity is nonlinear then the coefficients LII

and T II have constant sign, independently of the contrast.
Furthermore, they exhibit a minimum and a maximum,
respectively (see figure 5). In contrast, when the matrix is
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mat in the matrix.

nonlinear it is remarkable to observe that two values of contrast
exist which cancel out the second-order nonlinear effects in the
longitudinal and transverse direction, respectively (figure 8).

As mentioned above, to the best of the author’s knowledge
a continuum theory solution of this case is not available.
Therefore, we further analyze the elastic behavior of the
inhomogeneity/matrix system by varying the nonlinearity of
the matrix. To this aim, we have set κl = K , κh = K ′ and
κa = 3

2K ′ within the nonlinear matrix, where K and K ′ are
constants, so as to obtain

Cnl
11 = 3

√
3

4
K l
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112 =

√
3

4
Knl

mat, (4.14)

where K l
mat = K + K ′ and Knl

mat = K ′ directly affect the linear
and nonlinear behavior, respectively. By varing the value of
Knl

mat with respect to K l
mat, we can emphasize the nonlinear

regime. In figure 9 we report the atomistic results for the
nonlinear coefficients LII (top) and T II (bottom) versus the
(linear) elastic contrast for different values of nonlinearity
ratio Knl

mat/K
l
mat in the matrix. We have not reported the

results for the linear coefficients LI and T I since they are not
affected by the nonlinear features of both inhomogeneity and
matrix; indeed, they assume the very same values reported in
figure 8. It is interesting to underline that the longitudinal
coefficient LII vanishes for a given linear contrast for any
possible value of the nonlinear parameter Knl

mat of the matrix.
The same phenomenon has been observed for the transverse
coefficient T II.
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4.2.3. Nonlinear inhomogeneity in a nonlinear matrix.
We finally consider the case of a nonlinear inhomogeneity
embedded in a nonlinear matrix. We start by considering
both media as described in equation (4.11) with K = Kinc

and K = Kmat, respectively in the inhomogeneity and matrix
[59]. In figure 10 we report the longitudinal and transverse
coefficients for several values of the elastic contrast. In this
case the zero contrast value corresponds to a nonlinear but
homogeneous material (without inhomogeneity). Therefore,
we obtained LII = T II = 0 and LI = 1 for Kmat = Kinc, as
expected.

Since, as in the previous case, this configuration is
hardly affordable by continuum theory, we performed a more
detailed analysis by investigating several nonlinear hosting
matrices, all modeled by equation (4.14) but characterized by a
different ratio Knl

mat/K
l
mat between the nonlinear and the linear

stiffness coefficients. We have instead set the behavior of the
inhomogeneity according to equation (4.11), with K = Kinc.

In figure 11 we show the atomistic results for the nonlinear
coefficients LII (top) and T II (bottom) versus the elastic
contrast for different values of the Knl

mat/K
l
mat ratio. We

have not reported the results for the linear coefficients LI

and T I since they are not affected by the nonlinear features
of both inhomogeneity and matrix; indeed, they assume the
very same values reported in figure 10. Interestingly enough,
we observe that there is a value of the (linear) elastic contrast
log2(K

l
mat/Kinc) which generates a constant value of LII (see

figure 11, top) for any nonlinearity of the matrix. This result
indicates that, in such a specific condition, the nonlinear effects
of the matrix are quenched. The same behavior is also observed
for the transverse coefficient T II (see figure 11, bottom).

4.2.4. General conclusions. We have proved that our elastic
lattice model is in perfect agreement with the continuum
Eshelby theory for linear or nonlinear large inhomogeneities
embedded in a linear matrix. However, when the radius of
the inhomogeneity becomes comparable to the interatomic
distance characterizing the selected material, scale effects
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Figure 11. Atomistic results for the nonlinear coefficients LII (top)
and T II (bottom) versus the (linear) elastic contrast log2(K
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for different values of the Knl
mat/K

l
mat ratio in the matrix.

indeed affect the elastic features, resulting in sizable deviations
from the continuum results. More specifically, we have
provided evidence that such effects are stronger for a positive
elastic contrast, i.e. for a matrix stiffer than the inhomogeneity.
The threshold for the onset of possible scale effects can be set
at a few tens of nm.

By further investigating the case of a nonlinear matrix
embedding a linear inhomogeneity, we have proved that the
nonlinear response vanishes for a given linear contrast (for
any nonlinearity of the matrix).

Finally, we have proved that linear and nonlinear
scale effects are described by the same scaling exponent,
independently of the elastic contrast. This suggests that the
overall strain or stress field within the inhomogeneity can
be described by a similar power law with the same scaling
exponent.

4.3. Isolated inhomogeneity: interface effects

The mechanical behavior of nanostructured materials is
strongly affected by interface features, occurring at the
boundary between phases characterized by different elastic
constitutive equations or crystalline structures. These effects
can only be described by taking into account the exact atomistic
architecture of the two phases and of the interface. Therefore,
the elastic lattice model describe above is no longer suitable.

In this section we briefly describe an alternative approach,
based on standard molecular dynamics (MD) simulations. As
a paradigmatic example, we study the elastic behavior of a
silicon nanowire embedded in a silicon matrix. The input
configuration is obtained by rotating a cylindrical portion with
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Figure 12. A model of a nanowire embedded in a homogeneous
matrix. See text for details about the atomic structure.
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Figure 13. Prestrain within an embedded nanowire as a function of
its radius R. Symbols (solid line) represent MD (continuum) results.

radius R of a Si crystal by an angle θ = π/4 around the (0 0 1)

axis (hereafter referred to as the z-axis), as shown in figure 12.
The interface structure is obtained by a careful MD relaxation
of the system, based on the realistic Tersoff potential.

Because of the cubic symmetry of the diamond lattice,
the rotated cylinder behaves, upon loading along the y-axis, as
an inclusion with a different elastic response than the hosting
matrix. By generating the input structure as above, we have
arranged several samples with 2 nm < R < 20 nm and we
have computed the atomic displacement field: the disordered
interface generates a uniform hydrostatic compression within
the inclusion. Therefore, MD simulations predict that even in
the absence of any external load, the inclusions exhibit a state
of uniform internal prestrain.

In figure 13 we report the calculated value of the prestrain
versus the nanowire radius R: in absolute value the prestrain
vanishes for large wires, as expected. By evaluating the atom
number density nat(r) as a function of the distance r from the
center of the nanowire, it is found that nat(r = R) < nSi

at ,
where nSi

at is the corresponding quantity for bulk crystalline Si.
The interface region effectively behaves as a different material,
i.e. a coating of thickness d inserted between the matrix and
the inclusion. Therefore, the volume available for the inclusion
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Figure 14. Longitudinal (εyy) and transverse (εxx) strain
components within a loaded nanowire as a function of its radius R.
Full and dashed lines represent the continuum theory elaborated
in [61]. We also show by dotted lines the corresponding asymptotic
values approached when the interface-induced prestrain becomes
negligible (Eshelby theory).

is reduced with respect to the initial configuration by a factor
((R − d)/R)2. When R increases this volume variation and
the resulting prestrain tend to zero. A continuum model able
to take into consideration this effect is described in [61] and
the corresponding result is shown in figure 13.

A uniaxial homogeneous elongation of 1% along the
y direction is now applied to the sample and the longitudinal
and the transverse strain fields inside the embedded wire are
calculated after further MD relaxation; reported in figure 14.
For large values of the radius, the effect of the interface-
induced prestrain is negligible and the elastic fields become
size independent. Moreover, in the limit of vanishing prestrain
(or equivalently for R → ∞), the constant values approached
by the atomistic data correspond to those predicted by the
Eshelby continuum model. Prestrain effects can be taken into
account by a specific modification of the continuum theory, as
described in [61].

4.4. Dispersions of inhomogeneities

The general result stated in equation (3.14) can be applied
(through a suitable homogenization procedure) to model
any dispersion of arbitrarily nonlinear and anisotropic
inhomogeneities [55]. In particular, we will consider
the specific case of a distribution of spherically shaped
nanoparticles, as shown in figure 15. Their density is described
by the volume fraction c = Ve/V , defined as the ratio between
the total volume Ve of the embedded inhomogeneities and the
total volume V of the heterogeneous material.

As for the elastic behavior, we assume that the matrix
is described by the linear constitutive equation T̂ = 2µ1ε̂ +(
K1 − 2

3µ1
)

Tr(ε̂)Î , where K1 and µ1 are the bulk and shear
moduli, respectively. The spherical inhomogeneities, in turn,
will be described by the most general isotropic nonlinear
constitutive equation expanded up to the second order in the
strain components. The corresponding strain energy density
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Figure 15. Dispersion of nonlinear spherical inhomogeneities
(characterized by linear moduli K2 and µ2 and Landau coefficients
A, B and C) of total volume Ve, embedded in a linear matrix
(characterized by linear moduli K1 and µ1). The total volume of the
heterogeneous system is V and, therefore, the inhomogeneities’
volume fraction is c = Ve/V .

U(ε̂) is given by

U(ε̂) = µ2Tr
(
ε̂2

)
+

1

2

(
K2 − 2

3
µ2

) [
Tr

(
ε̂
)]2

+
A

3
Tr

(
ε̂3

)
+ BTr

(
ε̂
)

Tr
(
ε̂2

)
+

C

3

[
Tr

(
ε̂
)]3

, (4.15)

which through equation (2.25) provides the following
expression for the stress tensor:

T̂ = 2µ2ε̂ +

(
K2 − 2

3
µ2

)
Tr

(
ε̂
)
Î

+ Aε̂2 + B{Tr(ε̂2)Î + 2ε̂Tr(ε̂)} + C[Tr(ε̂)]2Î . (4.16)

The parameters A, B and C are the Landau moduli [17]
and they represent the deviation from standard linearity. By
inserting equation (4.16) and the explicit expression of the
Eshelby tensor for a sphere [15] into equation (3.14), it can be
proved that

Lε̂in + MTr(ε̂in)Î + N(ε̂in)2 + Oε̂inTr(ε̂in) + P Tr
[
(ε̂in)2

]
Î

+ Q
[
Tr(ε̂in)

]2
Î = ε̂∞ (4.17)

defining the explicit relation between the internal strain ε̂in and
the remote deformation ε̂∞, for a single nonlinear spherical
inhomogeneity. The parameters

L = 1 +
6

5

K1 + 2µ1

3K1 + 4µ1

(
µ2

µ1
− 1

)
, (4.18)

M =
5K2 − K1

(
3 + 2 µ2

µ1

)
− 4 (µ2 − µ1)

5 (3K1 + 4µ1)
, (4.19)

N = 3

5

A

µ1

K1 + 2µ1

3K1 + 4µ1
, (4.20)

O = 6

5

B

µ1

K1 + 2µ1

3K1 + 4µ1
, (4.21)

P = 1

15 (3K1 + 4µ1)

[
15B − A

(
1 + 3

K1

µ1

)]
, (4.22)

Q = 1

15 (3K1 + 4µ1)

[
15C − 2B

(
1 + 3

K1

µ1

)]
(4.23)

depend on both linear and nonlinear moduli.
In order to investigate the case shown in figure 15 we

will add the approximation of dilute dispersion corresponding

to the limit of a small volume fraction, indeed a case of
relevant practical interest. Under this assumption, the average
value of the strain in the overall system is given by 〈ε̂〉 =
cε̂in + (1−c)ε̂∞ [43]. Similarly, the average value of the stress
is 〈T̂ 〉 = Ĉ(1)〈ε̂〉 + cT̂ in − c Ĉ(1)ε̂in [43]. The average fields
〈T̂ 〉 and 〈ε̂〉, combined through equation (4.17), determine the
effective constitutive equation for the heterogeneous system.
Basically, it is written as equation (4.16) where, however, a
new set of effective linear and nonlinear elastic moduli must
be introduced: the linear ones are given by

µeff = µ1 + c
µ2 − µ1

c + (1 − c)
[
1 + 6

5

(
µ2

µ1
− 1

)
K1+2µ1

3K1+4µ1

] , (4.24)

Keff = K1 +
(3K1 + 4µ1)(K2 − K1)c

3K2 + 4µ1 − 3c(K2 − K1)
, (4.25)

while the effective counterparts of the Laundau coefficients for
the heterogeneous systems are

Aeff = c
A

L′2 − 2c
N ′ (µ2 − µ1)

L′3 , (4.26)

Beff = 2c

(
N ′M ′ − L′P ′) (µ2 − µ1)

L′3 (L′ + 3M ′)

− c
(N ′ + 3P ′)

[
K2 − K1 − 2

3 (µ2 − µ1)
]

L′2(L′ + 3M ′)
+ c

B

L′2 ,

(4.27)

Ceff = 1

9

c (9C + 9B + A)

(L′ + 3M ′)2 +
1

9

c (A − 3B)

L′2

+
1

9

c(4N ′ + 6O ′)(µ2 − µ1)

L′2 (L′ + 3M ′)
− 2

9

c (3B + A)

L′ (L′ + 3M ′)

+
1

9

c(3N ′ + 9P ′)(K2 − K1)

L′2 (L′ + 3M ′)
− 4

9

N ′ (µ2 − µ1) c

L′3

− 1

3

c(9Q′ + 3O ′ + 3P ′ + N ′)(K2 − K1)

(L′ + 3M ′)3 , (4.28)

where we have introduced the parameters L′ = c + (1 − c) L,
M ′ = (1 − c)M , N ′ = (1 − c)N , O ′ = (1 − c)O,
P ′ = (1 − c)P and Q′ = (1 − c)Q. We note that
equations (4.24)–(4.28) hold even in the limiting case of
c = 1, falling beyond the adopted hypothesis of small volume
fraction. Interesting enough, equations (4.26)–(4.28) provide
a universal mixing scheme linking the Landau coefficients of
the inhomogeneities to the corresponding effective nonlinear
elastic moduli of the composite system [54, 55].

In order to discuss a showcase example, we numerically
solved equations (4.24)–(4.28), setting µ1 = 1, µ2 = 4, K1 =
10, K2 = 1, A = −3, B = 8, C = 5 in arbitrary units. In
figure 16 we report the effective moduli versus the volume
fraction c. Under the sole hypothesis that K1 � K2, we
always observe a remarkable amplification of the nonlinear
effective modulus Ceff . Such an intriguing feature is obtained
for any set of parameters, provided that the matrix is much
more incompressible than the inhomogeneities. We point out
that this feature occurs well within the range of validity of the
present theory, namely for small values of c (see figure 16).
More generally, the enhancement of Landau moduli suggests
that the nonlinear effective properties can be strongly affected
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Figure 16. Variation of the linear and nonlinear effective elastic
moduli of the composite system shown in figure 12 upon the volume
fraction c of the inhomogeneities. The actual values of the linear
elastic moduli (in arbitrary units) for the matrix (subscript 1) and for
the inhomogeneities (subscript 2) are shown in the top right inset,
together with the Laundau coefficients.

by the linear moduli of the constituents of the heterogeneous
material [55]. For example, the ratio Ceff/C is sensibly
modulated by the ratio K1/K2.

Finally, we briefly discuss the results concerning
the two-dimensional case (dispersion of circular nonlinear
inhomogeneities on the plane). The circular inhomogeneities
are randomly embedded in a linear matrix with elastic moduli
µ1 and k1 = λ1 + µ1 (k1 is the two-dimensional version of the
bulk modulus). As before, we suppose that the volume fraction
c of the embedded phase is small (dilute dispersion). The linear
matrix is described by T̂ (1) = 2µ1ε̂

(1) + (k1 − µ1)Tr(ε̂(1))Î . If
we identify the linear coefficients of the inhomogeneities by
µ2 and k2 = λ2 + µ2, and their nonlinear constants by e and f,
then equation (3.29) supplies the following stress–strain
relation:

T̂ (2) = 2µ2ε̂
(2) + (k2 − µ2)Tr(ε̂(2))Î + 2eTr(ε̂(2))ε̂(2)

+ eTr
[
(ε̂(2))2

]
Î + 3fTr2(ε̂(2))Î . (4.29)

As before, we define the average strain 〈ε̂〉 and average stress
〈T̂ 〉 within the overall system. Therefore, the constitutive
equation of the whole system is expressed in terms of the
effective linear and nonlinear elastic moduli as follows:

〈T̂ 〉 = 2µeff〈ε̂〉 + (keff − µeff)Tr(〈ε̂〉)Î + 2eeffTr(〈ε̂〉)〈ε̂〉
+ eeffTr[〈ε̂〉2]Î + 3feffTr2(〈ε̂〉)Î , (4.30)

where the effective linear elastic moduli are given by

µeff = µ1 + c
µ2 − µ1

c + (1 − c)
[
1 + 1

2

(
µ2

µ1
− 1

)
k1+2µ1

k1+µ1

] ,

keff = k1 + c
k2 − k1

c + (1 − c)
µ1+k2

µ1+k1

. (4.31)

As for the effective nonlinear elastic moduli, we obtain

eeff = ec

L2

(
1 − 1 − c

L + 2M
k2 − k1

µ1 + k1

)
, (4.32)

feff = −c(1 − c)(k2 − k1 − µ2 + µ1)(2f + e)

2(k1 + µ1)(L + 2M)3

+
ec(1 − c)(k2 − k1 − µ2 + µ1)

6L2(k1 + µ1)(L + 2M)
− ec

6L2

+
c(1 − c)(µ1 − µ2)(2f + e)

2(k1 + µ1)(L + 2M)3
+

c(2f + e)

2(L + 2M)2

+
ec(1 − c)(µ2 − µ1)(3µ1 + k1)

6µ1(k1 + µ1)L2(L + 2M)
− ec

3L(L + 2M)
.

(4.33)

Here we have defined

L = c + (1 − c)

[
1 +

1

2

k1 + 2µ1

k1 + µ1

(
µ2

µ1
− 1

)]
, (4.34)

M = (1 − c)
1

4 (k1 + µ1)

×
[

2k2 − k1

(
1 +

µ2

µ1

)
− 2 (µ2 − µ1)

]
(4.35)

which are the two-dimensional counterpart of the parameters
L′ = c + (1 − c)L and M ′ = (1 − c)M , where L and M are
given in equations (4.18) and (4.19).

4.5. Nanograined composite materials: from uniform to
graded structures

Another class of nanostructured materials of large techno-
logical interest and paradigmatic conceptual relevance is
represented by uniform as well as graded nanograined
composite materials. Both systems are described as a
mixture of nano-sized grains (having completely haphazard
distribution of size, position and shape) made by two
(or more) different elastic media. While in uniform systems
such a mixture is randomly distributed in space, in graded
nanograined materials the composition (i.e. the density and/or
size of grains corresponding to a given phase) gradually change
along a fixed direction. In figure 17 one can find an example
of two random mixtures (made by two different materials,
marked by the green and red color) characterized by the same
volume fractions for the two phases, but differing as far as the
granularity is concerned.

To begin, we take into consideration uniform nanograined
materials (of the same kind as those ones shown in figure 17)
formed by two different phases having elastic moduli given
by �x1 = (µ1, k1) and �x2 = (µ2, k2), and volume fractions
c1 = 1 − c and c2 = c, respectively. As before, k1,2

(µ1,2) are the two-dimensional bulk (shear) moduli. We have
combined the two elastic moduli into a two-dimensional vector
�xi = (µi, ki) in order to compact and simplify the notation in
the following developments. We suppose, in fact, that the
mixing rule for this system is given by

�xeff = �G (�x1, �x2, c) , (4.36)

where �xeff = (µeff , keff ) effectively describes the elastic
features of the grained structure in terms of the bulk and shear
moduli of the component materials. We will assume that the
only structural information about the mixture is the volume
fraction of the second medium, since the overall medium is

22



Rep. Prog. Phys. 74 (2011) 116501 L Colombo and S Giordano

Figure 17. Two examples of N = 2 component (red and green) nanograined composite materials with the same volume fractions
(red: c1 = 0.65; green: c2 = 0.35), but different granularity N0/N = 50 (left) and 25 (right).

composed of particles completely randomized in size, position
and shape. We note that in this problem we may not distinguish
between a ‘matrix’ and the ‘inclusions’: accordingly, the
concept of ‘embedding’ so usefully developed in the previous
sections is no longer relevant. Nevertheless, it is possible to
use equation (4.31) in order to find some properties of a random
mixture, i.e. of the function �G defined in equation (4.36). To
this aim, let us examine the situation of the random mixture
for very low values of c: we may think that a low value of c is
reached when the structure contains only very small elements
of the second medium dispersed in the matrix of the first
medium. In this limiting case, equation (4.31) (obtained for
diluted dispersion of particles) is valid: therefore, the behavior
of the function �G must be described by equation (4.31). Hence,
we may write the derivatives of �G with respect to the volume
fraction c (in the limit of vanishingly small c):

∂G1

∂c
= ∂µeff

∂c
= 2µ1 (µ1 + k1) (µ2 − µ1)

µ1 (k1 + µ2) + µ2 (k1 + 2µ1)
, (4.37)

∂G2

∂c
= ∂keff

∂c
= µ1 + k1

µ1 + k2
(k2 − k1) . (4.38)

Equations (4.37) and (4.38) play a key role in developing
a general effective medium theory for the random mixture.
Using these expressions, in fact, we may solve the complete
problem of a linear random mixture composed by N different
homogeneous components randomly mixed together (moduli
�xi and volume fractions ci) [75–77]. To this aim we introduce
the probability density f (�x) describing the elastic moduli of a
given grain (with volume 
V ) of the nanostructure. Such
a probability density is normalized on the space �, where
the properties �x can range, namely,

∫
�

f (�x) d�x = 1. In our
random mixture we have

f (�x) =
N∑

i=1

ciδ(�x − �xi), (4.39)

where
∑N

i=1 ci = 1. Now, we may think to add to the overall
system (with effective properties �xeff and volume V ) another
grain with volume 
V � V and properties �x, chosen at
random through the probability density f (�x). The elastic
properties of the resulting new mixture can be described by

homogenization, i.e. by describing its average behavior as

�x ′
eff = �G

(
�xeff , �x,


V


V + V

)
, (4.40)

where we have considered a two-phase mixture between �xeff

(the original medium) and �x (the added grain). Now, the
average of �x ′

eff must correspond to the original �xeff and therefore
we obtain

�xeff =
∫

�

�G
(

�xeff , �x,

V


V + V

)
f (�x) d�x. (4.41)

Since 
V � V , we can expand �G up to the first order in

V /(
V + V ) and therefore equation (4.41) is approximated
(to the linear order) as

�xeff =
∫

�

[
�G(�xeff , �x, 0) +

∂ �G
∂c

|c=0

V


V + V

]
f (�x) d�x

= �xeff +

V


V + V

∫
�

∂ �G
∂c

|c=0f (�x) d�x, (4.42)

which implies the most important result of the effective
medium theory, namely∫

�

∂ �G (�xeff , �x, 0)

∂c
f (�x) d�x = 0 (4.43)

or, equivalently, by inserting equation (4.39)

N∑
i=1

ci

∂ �G (�xeff , �xi, 0)

∂c
= 0. (4.44)

In order to conclude the procedure, we use equations (4.37)
and (4.38) by getting the mixing rules for the linear elastic
properties of a (two-dimensional) nanograined material or
random mixture

1

keff + µeff
=

N∑
i=1

ci

µeff + ki

, (4.45)

1

2µeff (keff + µeff)
=

N∑
i=1

ci

µeff (µi + keff) + µi (µeff + keff)
.

(4.46)
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While equations (4.45) and (4.46) represent an important
result of general validity, they cannot predict how the elastic
behavior of a nanoalloy is actually affected by the granularity
(see figure 17) or, equivalently, by the real size and shape
of grains. Another important atomic-scale detail is omitted,
namely the random or gradual character of their space
distribution. In order to introduce such relevant information
in our theory, we need to switch from the continuum to the
fully atomistic picture. In doing that, the first issue to cope
with is how to generate a trustworthy model of the mixture
nanostructure. A very effective protocol (inspired by the
elastic lattice model described in section 3.2) is to proceed
as follows: given a rectangular planar region (corresponding
to the simulation box of our atomistic simulations):

(i) we construct a perfect triangular lattice containing as many
as N0 points (note that at this stage a lattice point is not
yet associated with a given atomic species);

(ii) we then select at random N � N0 sites within the
above rectangular region and calculate their corresponding
Voronoi cells (each Voronoi cell will contain in average
N0/N lattice points);

(iii) finally, a given ith material (or, equivalently, atomic
species) is randomly assigned (we could possibly have
N different materials with N � N ) so as to realize the
above set of volume fractions ci (such that

∑N
i=1 ci = 1);

whenever two adjacent cells will be filled by the same
material atoms, they will be grouped together generating
a grain of the final structure.

In figure 17 one can find two examples of uniform nanograined
materials with N = 2 components (marked by red and
green color) and the same volume fractions c1 = 0.65 and
c2 = 1 − c1 = 0.35; the simulation box contains 43 008
atoms placed on a triangular lattice with interatomic distance
r0 = 3.4 Å. The two samples have a different granularity
defined by N0/N = 50 (figure 17, left) corresponding to
an average Voronoi cell diameter of 25 nm and N0/N = 25
(figure 17, right) corresponding to an average Voronoi cell
diameter of 15 nm.

A second important issue is to verify whether the elastic
lattice model of section 3.2 provides elastic moduli values for
a random mixture consistent with equations (4.45) and (4.46).
This is proved in figure 18 where the linear elastic constants
of a two-phase random mixture are calculated atomistically
(symbols) and by continuum (dotted lines) for any possible
value of the volume fraction of the second phase. We have set
the first component material to be a linear one with C11 =
350.11 N m−1 and C12 = 59.52 N m−1, while the second
component material is nonlinear with C11 = 93.40 N m−1,
C12 = 28.02 N m−1, C111 = −450.00 N m−1 and C112 =
−85.00 N m−1. We can draw an important conclusion, namely,
the effective linear properties of a nanograined material
strongly depend on the average composition.

This result is found to hold for any possible value of
granularity we investigated, which therefore appears not to
affect the overall linear response of the mixture. Moreover,
we note that the atomistic data are in rather good agreement
with the effective medium theory above described. It means
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Figure 18. Effective linear constants C11 and C12 of a
two-component nanograined material: comparison between the
predictions of continuum (black dotted lines) and atomistic
simulations (symbols) obtained with different granularities (red
crosses: N0/N = 25; blue circles: N0/N = 50).

that the size of the grains is not relevant for the linear elastic
response of the nanograined structure, as was indeed assumed
for developing the linear effective medium theory.

The nonlinear features are summarized in figure 19 from
which we extract a twofold message. On the one hand, the
nonlinear effective properties, at variance with their linear
counterparts, do depend on the granularity of the structure;
in particular, we have found that finer granularities slightly
reduce the overall nonlinearity of the grained material, and
vice-versa. On the other hand, the effective nonlinear constants
are not monotonic functions of the volume fraction of the
second material (the nonlinear one). This is a remarkable
result providing evidence that there is a value of volume
fraction maximizing (in absolute value) a given nonlinear
constant. We also note that different moduli are maximized
at different c values. This is key issue in tailoring the resulting
overall response of a nanograined material: as a matter of
fact, we have shown that it is possible to obtain a nonlinear
effective property exceeding (always in absolute value) the
corresponding nonlinear property of any component phase.
In other words, by carefully selecting suitable c values we
can obtain an amplification of the nonlinear response of the
constituents. Interestingly enough, this feature reflects a
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Figure 19. Effective nonlinear constants C111 and C112 of a
two-component nanograined material obtained through atomistic
simulations with different granularities N0/N = 25 (red crosses)
and 50 (blue circles). Full and dotted lines are just a guide to the eye.

similar property found for dispersions of inhomogeneities in
the previous section.

We now extend our investigations to a graded nanograined
material, defined as a material with a gradual composition in a
given spatial direction (the z-axis in our case, while we define
the orthogonal direction as the y-axis). More specifically, we
will consider a nanograined structure with two components
having spatial-varying volume fractions c1(z) = 1 − c(z) and
c2(z) = c(z), where c(z) is a given profile. In order to generate
the atomic structure of the graded system corresponding to a
given profile c(z), we have adopted a similar protocol as for a
random mixture. While the first two steps are basically the
same, at the third step we select the ith Voronoi cell with
at z = zi and we assign to it a random number ξ ∈ [0, 1]
with uniform distribution: if ξ ∈ [0, c(zi)], then we attribute
that cell to the second component material; in contrast, if
ξ ∈ [c(zi), 1], then the cell is filled out by the first component
material. When two adjacent cells correspond to the same
material, they are grouped together generating the final grain
of the graded structure. At the end, once we fix the granularity
N0/N and the profile c(z), we are able to generate the
atomistic structure of any arbitrary compositionally graded
material.

Table 2. Value of the parameter a in terms of the average
concentration c0.

c0 = a + a(a − 1) ln | a−1
a

| a

0.1 −0.043 680 8898
0.2 −0.147 909 5261
0.3 −0.393 982 4571
0.4 −1.196 744 752
0.5 ±∞
0.6 2.196 744 752
0.7 1.393 982 457
0.8 1.147 909 526
0.9 1.042 994 499

In order to put at work the above machinery on real
cases, we have chosen a hyperbolic profile described by a
homographic function c(z) = (az + b)/(z + d). Furthermore,
by setting 0 � z � D and placing the pure first (second)
component at the boundary z = 0 (z = D), we simply
obtain b = d and b = −aD. The parameter D represents
the thickness of the space region over which the composition
gradually changes (this region is also referred to as the graded
interface between the two pure phases). In conclusion, the
profile is set in the simpler form

c(z) = a
z − D

z − aD
. (4.47)

According to this formula, the parameter a controls the
shape of the profile. It is possible to calculate the average
concentration c0 for 0 � z � D in terms of the parameter a.
The result is

c0 = 1

D

∫ D

0
a

z − D

z − aD
dz = a + a(a − 1) ln |a − 1

a
| (4.48)

and it has been used in table 2 for determining the values of the
parameter a corresponding to different values of the average
concentration c0. Of course, for the average concentration
c0 =0.5 we obtain the linear profile c(z) = 1 − z/D, which
corresponds to a → ±∞. With these values we have
generated the atomic structure of different graded interfaces,
as shown in figure 20, together with the corresponding
concentration profile given in equation (4.47).

Once a complete structure is generated, it is possible
to evaluate its elastic behavior both in the linear and in the
nonlinear regime. It is important to note that the graded
structure is anisotropic from the macroscopic point of view
and, in fact, it has a different elastic response in the longitudinal
and transverse directions. The graded specimen exhibits an
orthorhombic symmetry and, therefore, it should be described
by four linear elastic constants and by six nonlinear elastic
constants. In the following we will evaluate the full linear
response described by four constants, but for the sake of brevity
we discuss the behavior of only two nonlinear elastic constants.
We have chosen two materials as before: the first one is linear
with C11 = 350.11 N m−1 and C12 = 59.52 N m−1; the second
one is nonlinear with C11 = 93.40 N m−1, C12 = 28.02 N m−1,
C111 = −450.00 N m−1 and C112 = −85.00 N m−1. We have
used the single granularity N0/N = 50 corresponding to an
average Voronoi cell diameter of 25 nm.
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Figure 20. Graded materials with different values of c0 given by
(from top to bottom) 10%, 30%, 50%, 70% and 90%. The black
lines represent the profile given in equation (4.47).

Figure 21 shows the behavior of the effective Young’s
modulus and the effective Poisson’s ratio of the graded
structure. Both of them have been computed by subjecting
the system to transverse (i.e. along y, blue symbols) and
longitudinal (i.e. along z, red symbols) deformations versus
the average concentration c0, uniquely characterizing a sample
with a given profile (see figure 20 and table 2). The atomistic
results are compared with the above described effective
medium theory (black dotted–dashed line), corresponding to
a nanograined material with the same c0 composition, but
without gradation (i.e. a heterogeneous but isotropic structure).
This is equivalent to saying that the continuum theory will
not carry any information about the actual atomistic structure
of the graded interface material. The unique parameter
entering the effective medium theory (in addition to the elastic
moduli) is the average concentration c0 of the components.
As for Young’s modulus, the atomistic results are very
different for the transverse and the longitudinal directions.

 100

 150

 200

 250

 300

 350

 0  0.2  0.4  0.6  0.8  1

E
 [N

/m
]

ν

c0

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0  0.2  0.4  0.6  0.8  1
c0

Figure 21. Effective linear moduli E (top) and ν (bottom) of a
two-component graded nanograined material versus the average
volume fraction c0. Red: atomistic results for the longitudinal
direction; blue: atomistic results for the transverse directions. Black
dotted–dashed line: effective medium theory prediction.

More specifically, only the longitudinal behavior is well
reproduced by the effective medium theory, which because
of its (unrealistic) isotropic character is unable to distinguish
between the different response regimes along or normal to
the direction of variation of the concentration. Moreover,
the longitudinal Young’s modulus is always slightly smaller
(about 2–3%) than the value predicted by continuum. The
maximum disagreement between the two opposite pictures (as
large as about 20–25%) can be measured for an approximate
average concentration near 50%. On the other hand,
neither the longitudinal nor the transverse Poisson’s ratio is
correctly described by the effective medium theory. Moreover,
the results are again very different for the transverse and
longitudinal directions.

In figure 22 we finally report the two nonlinear elastic
moduli C222 and C122 of the same graded nanograined material.
These two constants can be simultaneously measured (or, in our
case, calculated) when the material is subjected to a uniaxial
strain εzz along the longitudinal direction z. In fact, in this case
the relevant components of the stress are

Tyy = C12εzz + 1
2C122ε

2
zz, Tzz = C22εzz + 1

2C222ε
2
zz.

(4.49)

26



Rep. Prog. Phys. 74 (2011) 116501 L Colombo and S Giordano

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0  0.2  0.4  0.6  0.8  1

C
22

2 
[N

/m
]

c0

-140

-120

-100

-80

-60

-40

-20

 0

 0  0.2  0.4  0.6  0.8  1

C
12

2 
[N

/m
]

c0

Figure 22. Effective nonlinear constants C222 and C122 of a
two-component graded nanograined material versus the average
volume fraction c0 obtained through atomistic simulations with a
fixed granularity N0/N = 50.

Other nonlinear constants, not discussed here, can be simply
obtained by applying different strains to the structure. To
conclude, we can draw a comparison between figures 19 and
22 and we understand that the graduation of the composition
can further enhance the phenomenon of the amplification of
the nonlinearity, already introduced in the previous section.

4.6. Theory versus experimental results

The predictions of homogenization methods have been
confirmed by the experimental results in many cases. We
briefly report here some examples.

As regards the dispersion of spherical particles, the
homogenization method described in section 4.4 has been
compared with experimental data corresponding to the bulk
modulus of porous P-311 glass measured at room temperature
[43]. In the same work a similar comparison has been drawn for
Young’s modulus of porous polycrystalline monoclinic oxide
Gd2O3, over a wide range of porosities. In both cases the
agreement is very good [43], thus confirming the robustness
of these continuum models in predicting the overall elastic
features of complex materials.

As regards nanograined materials, the effective medium
theory presented here for the linear elastic properties has been

compared with experimental data in [77]. In particular, an
excellent agreement has been obtained for Young’s modulus of
sintered glass beads and of different sintered ceramic materials
(holmia Ho2O3, ytterbia Yb2O3, yttria Y2O3 and samaria
Sm2O3) [77].

If we take into consideration the nonlinear elastic
properties we must distinguish between homogeneous
materials and heterogeneous structures. By focusing on
homogeneous materials, one can find several comparisons
between the values of the nonlinear elastic moduli obtained
by experimental procedures [78, 79] and by computational
techniques (e.g. classical MD [80] or first-principles
calculations [81]). In this case the computational techniques
are currently well suited to reproduce the experimental data.

On the other hand, if we consider the nonlinear elastic
properties of heterogeneous or nanostructured systems the
comparisons between theory and experiment are rather difficult
since experimental data are basically missing. Therefore, the
nonlinear models proposed in this review should be better
considered as predictive tools, useful to open new lines of
research in nonlinear material science.

4.7. Nonlinear elasticity of two-dimensional atomic sheets

Monolayer crystals, as thin as a single atomic sheet, represent
a versatile source of novel two-dimensional materials with
intriguing physical properties, possibly useful in many front-
end technologies such as nano-/opto-electronics, energetics
and nanomechanics. The experimental search, synthesis
and characterization of such low-dimensional materials, as
well as the theoretical investigation of their properties, is a
very active and lively field of modern nanoscience (see for
instance [82–89] and references therein). Above all, graphene
(i.e. a two-dimensional hexagonal lattice of carbon atoms) is
playing a role of paramount importance, due to its unique
electronic, transport and mechanical properties [90, 91]. In this
section, we precisely focus on graphene and its hydrogenated
counterparts (also referred to as graphanes) by investigating
their linear and nonlinear elastic features.

4.7.1. Nonlinear elasticity of graphene. The graphene
atomic scaffold is sketched in figure 23, together with its
two nonequivalent high-symmetry ‘armchair’ and ‘zigzag’
directions. By the general principles of continuum (small
strain) elasticity, we can straightforwardly write down the
formal expression, up to third order in strain, for the graphene
strain energy density U [92]

2U = E

1 + ν
Tr

(
ε̂2

)
+

Eν

1 − ν2

(
Trε̂

)2
+

1

3
C111ε

3
xx +

1

3
C222ε

3
yy

+ C112ε
2
xxεyy + (C111 − C222 + C112)εxxε

2
yy

+ (3C222 − 2C111 − C112)εxxε
2
xy

+ (2C111 − C222 − C112)εyyε
2
xy. (4.50)

While any quantity appearing in this equation has been
formally defined in section 2, it is important to understand
that for the present two-dimensional material U they should
be intended as the elastic potential energy per unit area. Also,
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Figure 23. Schematic representation of the graphene scaffold with
its armchair and zigzag directions. The central inset defines the set
of unit vectors �ex,y and θ the angle used in the text.

we note that we set εiiεjj = Tr(ε̂2) and εij εij = (Trε̂)2 to
compact the notation. Our primary goal is to work out the
stress–strain nonlinear constitutive equation for graphene in-
plane stretching according to equation (2.25) and to compare
our theoretical predictions to experimental data [44].

We begin by considering very simple in-plane deforma-
tions, namely, (i) a uniaxial deformation ζ along the zigzag
direction, corresponding to a strain tensor ε

(zz)
ij = ζ δixδjx ; (ii)

a uniaxial deformation ζ along the armchair direction, cor-
responding to a strain tensor ε

(ac)
ij = ζ δiyδjy ; (iii) a hydro-

static planar deformation ζ , corresponding to the strain tensor
ε

(p)

ij = ζ δij and, finally, (iv) a shear deformation ζ , corre-

sponding to an in-plane strain tensor ε
(s)
ij = ζ(δixδjy + δiyδjx).

In the spirit discussed throughout this review, the continuum
picture is now blended to atomistics and, therefore, the en-
ergy versus strain curves needed to determine elastic moduli
have been calculated atomistically by a suitable tight-binding
(TB) model [93, 94] for a periodically repeated square cell con-
taining as many as 400 carbon atoms. For any given applied
deformation, full relaxation of the internal degrees of free-
dom of the simulation cell was performed by zero temperature
damped dynamics, until interatomic forces were not larger than
0.5 × 10−11 eV Å−1 [92].

For the deformations ε
(zz)
ij , ε

(ac)
ij , ε

(p)

ij and ε
(s)
ij the elastic

energy of strained graphene can be written in terms of just the
single deformation parameter ζ :

U(ζ ) = U0 + 1
2U(2)ζ 2 + 1

6U(3)ζ 3 + O(ζ 4), (4.51)

where U0 is the energy of the unstrained configuration. Since
the expansion coefficients U(2) and U(3) are related to elastic
moduli as summarized in table 3, a straightforward fit of
equation (4.51) can provide the full set of linear moduli and
TOECs.

The present TB calculation provides a (two-dimensional)
Young’s modulus value E = 312 N m−1 which is in reasonable
agreement with the literature [44, 95–98], while Poisson’s ratio
value ν = 0.31 is found to be larger than most of the ab initio

Table 3. Relationship among the energy expansion coefficients U(2)

and U(3) of equation (4.51) and the elastic moduli of graphene for
four in-plane deformations.

Uniform strain U(2) U (3)

ε̂(zz) =
(

ζ 0
0 0

)
E

1 − ν2
C111

ε̂(ac) =
(

0 0
0 ζ

)
E

1 − ν2
C222

ε̂(p) =
(

ζ 0
0 ζ

)
2E

1 − ν
4C111 − 2C222 + 6C112

ε̂(s) =
(

0 ζ
ζ 0

)
2E

1 + ν
0

results [97–101]. This disagreement is clearly due to the
empirical character of the adopted TB model. It is, however,
important to note that the nonlinear elastic features discussed
below only weakly depend upon ν: as a matter of fact, by
varying its value within the set of values found in the literature,
we observed a variation of the effective moduli smaller than
10%. The same fitting of the U = U(ζ ) curve has determined
the full set of TOECs as well, which were C111 = −1689.2,
C222 = −1487.7 and C112 = −484.1 in units of N m−1. We
note that C111 is different from C222, i.e. a monolayer graphene
is isotropic in the linear elasticity approximation (as indeed
confirmed by the analysis of the above shear deformation),
while it is anisotropic whenever nonlinear features are properly
taken into account.

In order to compare our predictions with experimental
data, we preliminarily observe that, for any uniaxial
deformation along �n (see figure (23)) the stress field is T̂ =
σ�n�n ⊗ �n, with in-plane components Txx = σ�n cos2 θ , Txy =
σ�n cos θ sin θ and Tyy = σ�n sin2 θ . Similarly, we can find the
relative variation of length ε�n = �n · ε̂�n along the direction
defined by �n. By combining these results, we can elaborate
the effective stress-strain relation along the arbitrary direction
�n in a very simple form

σ�n = Eε�n + D�nε2
�n, (4.52)

where we have introduced the effective two-dimensional
nonlinear modulus

D�n = 3
2 (1 − ν)3�3 +

3

2
(1 − ν)(1 + ν)2�2

+3(2 cos2 θ − 1)(16 cos4 θ − 16 cos2 θ + 1)(1 + ν)3�1

(4.53)

describing the overall nonlinear behavior of the carbon sheet.
We note that the �-parameters are given in equation (3.34). If
we set �n = �ex (i.e. θ = 0), we obtain the nonlinear modulus
D(zz) for stretching along the zigzag direction

D(zz) = 3(1 + ν)3�1 + 3
2 (1 − ν)(1 + ν)2�2 + 3

2 (1 − ν)3�3

(4.54)

while, by setting �n = �ey (i.e. θ = π/2), we obtain the nonlinear
modulus D(ac) for stretching along the armchair direction

D(ac) = −3(1 + ν)3�1 + 3
2 (1 − ν)(1 + ν)2�2 + 3

2 (1 − ν)3�3.

(4.55)
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Figure 24. Theoretical (this work) and experimental (see [44])
stress–strain curves. The shaded area represents the experimental
error.

In order to perform a meaningful comparison with
experimental data, we need to average the expression of D�n
over θ : as a matter of fact, the stress–strain was obtained
in [44] by nanoindentation of a suspended monolayer graphene
sample, a situation generating a strain field with radial
symmetry. This procedure leads to

〈D�n〉 = 1

2π

∫ 2π

0
D�ndθ = D(zz) + D(ac)

2

= 3

2
(1 − ν)

[
(1 + ν)2�2 + (1 − ν)2�3

]
. (4.56)

We will consistently assume that the experimentally deter-
mined nonlinear modulus of graphene actually corresponds
to the average value of the moduli for the zigzag and armchair
directions.

Using the TB values for TOECs, we easily obtain
D(zz) = −696.2, D(ac) = −469.6 and 〈D�n〉 = −582.9 in
units N m−1. While the negative values for D(zz) and D(ac)

indicate that, if the nonlinear behavior of graphene is softening
hyperelastic, the value for 〈D�n〉 is indeed very close to the
experimentally reported value D = −690 N m−1 of [44],
thus proving the reliability of the followed procedure. This
is convincingly confirmed by figure 24 where the theoretical
and experimental graphene stress–strain curves are compared:
the agreement is indeed remarkable. We can also determine
the failure stress (maximum of the stress–strain curve) σf =
−E2/4〈D�n〉, corresponding to a predicted failure stress as
high as 42.4 N m−1. This result is once again in excellent
agreement with the experimental value 42±4 N m−1, reported
in [44]. These values correspond to the failure strength of
a two-dimensional system. In order to draw a comparison
with bulk materials, we define an effective three-dimensional
failure stress σ 3D

f = σf/d , where d is taken as the interlayer
spacing in graphite. By considering d = 0.335 nm [102], we
obtain σ 3D

f
∼= 130 GPa. This very high value, exceeding that of

most materials (even including multi-walled nanotubes [103]),
motivates the use of one-atom thick carbon layers as possible
reinforcement in advanced composites.

4.7.2. Nonlinear elasticity of graphane. Graphane is
the hydrogenated form of graphene; it consists of a two-
dimensional, periodic, and covalently bonded hydrocarbon
with a C : H ratio of 1 [47, 104, 105]. Since hydrogen atoms can
bind to carbon atoms on both the top and bottom side, there
are three possible decoration schemes, shown in figure 25,
generating an equal number of inequivalent conformers: chair
(C-), boat (B-) and washboard (W-) graphane. They all fulfil
the characterizing conditions of: (i) 1:1 ratio between carbon
and hydrogen atoms; (ii) in-plane translational invariance.

The striking difference of graphane with respect to its
mother structure graphene is that hydrogenation causes a
change in the orbital hybridization which is now sp3-like.
The actual values of elastic moduli are likely to be affected
by this major change in chemical bonding. Furthermore,
some graphane conformers are not isotropic, at variance
with graphene which is so (in the linear approximation):
hydrogenation is expected to dramatically affect the overall
mechanical behavior of the system by introducing an
anisotropic dependence of its response to an external load.
Both features are interesting and worthy of investigation. For
both we will take full profit of the methods outlined in the
previous sections of this review.

While C-graphane has trigonal symmetry (and, therefore,
is elastically isotropic in linear regime as hexagonal graphene),
the remaining B- and W-conformers show an orthorhombic
symmetry, which causes an anisotropic linear elastic behavior.
Accordingly, the linear elastic energy density (per unit of area)
accumulated upon strain can be expressed as [57]

Utrigo = 1
2C11(ε

2
xx + ε2

yy + 2ε2
xy) + C12(εxxεyy − ε2

xy) (4.57)

for the istropic structures and as

Uortho = 1
2C11ε

2
xx + 1

2C22ε
2
yy + C12εxxεyy + 2C44ε

2
xy (4.58)

for the anisotropic ones. Elastic constants are defined
as usual and it must be understood that the small-strain
tensor is calculated with reference to the planar displacement
�u = (ux, uy). It is important to note that Utrigo can be obtained
from Uortho by simply imposing the isotropy condition C11 =
C22 and the Cauchy relation 2C44 = C11 − C12, holding for
both the hexagonal and trigonal symmetry. We will take profit
of this by focusing just on the elastic behavior of a system
described by equation (4.58); when needed, the general results
so obtained will be applied to the isotropic structures by fully
exploiting the above conditions. The constitutive in-plane
stress–strain equations are straightforwardly derived from
equation (4.58): Txx = C11εxx +C12εyy , Tyy = C22εyy +C12εxx

and Txy = 2C44εxy .
We now apply to whichever conformer an axial tension

σ along the arbitrary direction �n = cos θ �ex + sin θ �ey , where
the angle θ identifies the extension direction with respect to
the zigzag one (see figure 23, still holding for graphane). By
following a similar procedure as in section 4.7.1, we easily
obtain both the longitudinal component

εl = σ

[
C11



s4 +

C22



c4 +

(
1

C44
− 2

C12




)
c2s2

]
(4.59)
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Figure 25. Atomic architecture of the graphane conformers. Gray (red) spheres represent carbon (hydrogen).

Table 4. Graphene and graphane independent elastic constants
(units of N m−1). For graphene and C-graphane C11 = C22 and
2C44 = C11 − C12.

Graphene C-graphane B-graphane W-graphane

C11 354 248 258 280
C22 225 121
C12 60 20 −1.7 14
C44 93 81

and the transverse component

εt = σ

[(
C11 + C22



− 1

C44

)
c2s2 − C12




(
c4 + s4

)]
(4.60)

of the resulting small-strain tensor along (i.e. longitudinal)
or normally to (i.e. transverse) the direction �n (we set 
 =
C11C22 − C2

12, c = cos θ and s = sin θ ). By means of
equations (4.59) and (4.60) we can evaluate, respectively, the
θ -dependent Young’s modulus

E(θ) = σ/εl = 


C11s4 + C22c4 +
(



C44

− 2C12

)
c2s2

(4.61)

and the θ -dependent Poisson’s ratio

ν(θ) = −εt/εl = −
(
C11 + C22 − 


C44

)
c2s2 − C12

(
c4 + s4

)
C11s4 + C22c4 +

(



C44
− 2C12

)
c2s2

.

(4.62)
Following the same path as for graphene, E(θ) and ν(θ)

can be directly obtained by the linear elastic constants Cij ,
suitably computed through energy versus strain curves for
homogeneous in-plane deformations (we refer to [106] for
technical details). Table 4 summarizes the numerical results
obtained by density functional theory (DFT) as implemented
in the Quantum ESPRESSO package [107]. We used such an
ab initio total energy method since no quantitatively reliable
TB or empirical potential models are available for the elasticity
of those hydrocarbons here investigated.

We focus on an important new qualitative feature
characterizing some graphane conformers, namely, their
elastic moduli could depend upon the loading direction. This
is shown in figure 26 where we report the polar plots for
both Young’s modulus (left) and Poisson’s ratio (right). It
is apparent that graphene and C-graphane are, as expected,
characterized by linear elastic moduli independent of θ .
On the other hand, it is found that W- and B-graphane
are indeed elastically anisotropic, W- being much more

anisotropic than the B-conformer. Furthermore, this provides
evidence that Poisson’s ratio in whichever graphane conformer
is much smaller than in pristine graphene. Finally, an
intriguing unconventional behavior is observed in figure 26
for B-graphane, namely, for extensions along the zigzag
and armchair directions, the corresponding Poisson value is
vanishingly small (or even possibly negative, as discussed
in [106]).

The intriguing elastic behavior of graphane hydrocarbons
is further confirmed by their nonlinear features. The strain
energy function Utrigo for C-graphane is straightforwardly
provided by the continuum theory up to third order in strain

Utrigo = 1
2C11(ε

2
xx + ε2

yy + 2ε2
xy) + C12(εxxεyy − ε2

xy)

+ 1
6C111(ε

3
xx + ε3

yy) + 1
2C112(ε

2
xxεyy + εxxε

2
yy)

+ 2C144(εxxε
2
xy + εyyε

2
xy) + C114(ε

2
xxεxy + ε2

yyεxy)

+ 2C124εxxεxyεyy + 4
3C444ε

3
xy. (4.63)

Although for such a trigonal symmetry C111 = C222, C112 =
C122 and C144 = C244, still the overall nonlinear elastic
response is truly anisotropic since not all the relevant isotropic
conditions are fulfilled. Similarly, the strain energy function
Uortho for the B- and W-graphane is given by

Uortho = 1
2C11ε

2
xx + 1

2C22ε
2
yy + 2C44ε

2
xy + C12εxxεyy

+ 1
6C111ε

3
xx + 1

6C222ε
3
yy + 1

2C112ε
2
xxεyy

+ 1
2C122εxxε

2
yy + 2C144εxxε

2
xy + 2C244εyyε

2
xy.

(4.64)

Equations (4.63) and (4.64) can be obtained using the standard
tables of the tensor symmetries, found in many crystallography
textbooks (see, for instance, [57]). Following our usual
protocol, Utrigo and Uortho can be computed through energy
versus strain curves corresponding to suitable homogeneous
in-plane deformations described by just the single parameter ζ :

U(ζ ) = U0 + 1
2U(2)ζ 2 + 1

6U(3)ζ 3 + O(ζ 4). (4.65)

Since the expansion coefficients U(2) and U(3) are related to
elastic constants, as summarized in table 5 for the C-graphane
and in table 6 for the B- and W-graphane, a straightforward
fit of equation (4.65) can provide the full set of TOECs which
are indeed reported in table 7. We also report the graphene
moduli for the sake of comparison (these latter are obtained
through the ab initio method and can also be compared with
the corresponding TB results of the previous section).
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Young's modulus Poisson's ratio

Figure 26. Polar diagram for Young’s modulus E (left) in units N m−1 and Poisson’s ratio (right) of graphene and all graphane conformers.
The angle θ identifies the extension direction with respect to the zigzag one. Isotropic (anisotropic) behavior is associated with a circular
(non-circular) shape of the polar plot. The special case of B-graphane (as for the Poisson ratio) is highlighted by shading.

Table 5. Strain fields applied to compute the linear (Cij ) and
nonlinear (Cijk) elastic constants of C-graphane. The relation
between such constants and the fitting terms U(2) and U(3) of
equation (4.65) is reported as well.

Uniform
strain U(2) U (3)(

ζ 0
0 0

)
C11 C111(

ζ 0
0 ζ

)
2 (C11 + C12) 2C111 + 6C112(

0 ζ
ζ 0

)
2 (C11 − C12) 8C444(

ζ ζ
ζ 0

)
3C11 − 2C12 C111 + 12C144 + 6C114 + 8C444(

0 ζ
ζ −ζ

)
3C11 − 2C12 −C111 − 12C144 + 6C114 + 8C444(

ζ ζ
ζ −ζ

)
4 (C11 − C12) 12C114 − 12C124 + 8C444

We note that C111 < C222 for graphene and C222 > C111

for B-graphane or, equivalently, graphene and B-graphane
are characterized by an inverted anisotropy. In contrast, W-
graphane has the same anisotropy of graphene (C111 < C222),
but a larger |C111 − C222| difference. This means that the
different distribution of hydrogen atoms can induce strong
qualitative variations for the nonlinear elastic behavior of the
different conformers. We note that necessarily C444 = 0 in
B- and W-graphane because of the orthorhombic symmetry.
On the other hand, this nonlinear shear modulus could assume
any value for the trigonal lattice. Interestingly enough, we
have verified that C444 = 0 also for C-graphane. This is due to
the additional (with respect to the trigonal symmetry) mirror
symmetry of C-graphane.

Similarly to the case of graphene, an effective direction-
dependent nonlinear stress-strain relation can also be derived
for the three graphane conformers, having the same form given
in equation (4.52) with E = E(θ) taken from equation (4.61).

Table 6. Strain fields applied to compute the linear (Cij ) and
nonlinear (Cijk) elastic constants of the B- and W-graphane. The
relation between such constants and the fitting terms U(2) and U(3)

of equation (4.65) is reported as well.

Uniform
strain U(2) U (3)(

ζ 0
0 0

)
C11 C111(

0 0
0 ζ

)
C22 C222(

ζ 0
0 ζ

)
C11 + C22 + 2C12 C111 + C222 + 3C112 + 3C122(

0 ζ
ζ 0

)
4C44 0(

ζ ζ
ζ 0

)
C11 + 4C44 C111 + 12C144(

0 ζ
ζ ζ

)
C22 + 4C44 C222 + 12C244(

ζ 0
0 −ζ

)
C11 + C22 − 2C12 C111 − C222 − 3C112 + 3C122

The nonlinear elastic modulus D
(trigo)

�n for the C-graphane (as
well as for any trigonal 2D lattice) is given by [106]

D
(trigo)

�n = 1
2

[
ν (1 − ν) (C111 − 3C112)

+ (1 − ν)
(
1 + ν2

)
C111

+ 6cs (1 + ν)
(
1 + ν2

)
C114 − 12cs (1 + ν) νC124

+ 3c2s2 (1 − ν)
(
1 + ν2

)
(−C111 + 4C144 + C112)

+ 4c3s3 (1 + ν)
(
1 + ν2

)
(−3C114 + 2C444 + 3C124)

+ 8c3s3 (1 + ν) ν (−6C114 + 5C444 + 6C124)
]
, (4.66)

while the corresponding modulus D
(ortho)

�n for B- and
W-graphane is

D
(ortho)

�n = 1

2
3E3
�n

[
C111(C22c

2 − C12s
2)3

+ C222(C11s
2 − C12c

2)3
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Table 7. Graphene and graphane independent nonlinear elastic
constants (units of Nm−1).

Graphene C-graphane B-graphane W-graphane

C111 −1910 ± 11 −1385 ± 18 −1609 ± 31 −1756 ± 33
C222 −1764 ± 3 −1827 ± 7 −487 ± 85
C112 −341 ± 35 −195 ± 41 −20 ± 14 −75 ± 54
C122 −55 ± 22 −296 ± 36
C124 −411 ± 17
C114 530 ± 12
C144 568 ± 7 −161 ± 4 −143 ± 17
C244 −159 ± 3 −287 ± 10
C444 0.0 ± 10−5

Figure 27. Polar representation of the nonlinear elastic moduli D�n
of the three graphane conformers. In the B- and W-graphane cases,
D�n ≡ D are everywhere negative (softening hyperelasticity), while
in the C-graphene one the D�n alternates negative and positive values
(hardening hyperelasticity).

+ 3C112(C11s
2 − C12c

2)(C22c
2 − C12s

2)2

+ 3C122(C22c
2 − C12c

2)(C11s
2 − C12c

2)2

− 3C166c
2s2(C22c

2 − C12s
2)(
/C44)

2

− 3C266c
2s2(C11s

2 − C12c
2)(
/C44)

2
]
. (4.67)

They are shown in figure 27 as a function of θ .

Since allCijk < 0, as shown in table 7, D(ortho)

�n are negative
for stretching along any direction and, correspondingly, B-
and W-graphane are characterized by a hyperelastic softening
behavior. The trigonal C-graphane behaves in a very different
way. Since the C114 and C144 are positive, a hyperelastic
hardening behavior in the angular sectors 5/12π + kπ < θ <

1/12 + kπ and 8/12π + kπ < θ < 10/12 + kπ (kεZ) is,
in fact, predicted. We can conclude that C-graphane admits
both softening and hardening hyperelasticity, depending on the
direction of the applied strain. This unusual nonlinear property
makes graphane a very intriguing material with potentially
large technological impact in nanomechanics.

5. Conclusions

5.1. Synopsis of the key concepts and main results discussed
in this review

This review was basically organized into two parts.
In the first part we briefly outlined the elementary

continuum theory of elasticity in the small deformation
regime. The resulting framework formally defined the strain
energy function and the constitutive equation for any arbitrary
nonlinear elastic material. Nevertheless, such a continuum
picture was recognized to be inherently unable to exploit
the real atomic-scale structure of condensed matter and,
therefore, unable to predict important length-scale phenomena
in nanostructured systems.

The next part was devoted to a major conceptual step,
namely, blending continuum and atomistic theories. We have,
in particular, elaborated an elastic lattice model designed
(i) to map continuum elasticity onto a discrete lattice;
(ii) to introduce the notion of interatomic distance which,
in turn, naturally drives to the notion of length scale and,
therefore, to the possible onset of scale effects and (iii) to cast
any arbitrary (either linear or nonlinear) continuum constitutive
law in the form of a suitable atomic interaction potential,
eventually put at work on the above lattice.

This two-step procedure has been extensively applied
to investigate several key issues in the theory of the elastic
response of nanostructured materials, namely:

• nonlinearity; since the Eshelby model is affordable by
continuum methods for a few selected combinations of
nonlinear matrix or inhomogeneity, we applied the elastic
lattice model for investigating several heterogeneous
structures, taking into account any such combinations
found in real composite materials.

• scale effects; we provided evidence of some elastic
features falling out of reach of continuum theory, typically
when the nanostructure displays at a length scale smaller
10 nm. This length scale can be therefore assumed as
the lower boundary for continuum theory. We have
also verified the emergence of some power laws and
their universality, driving the scale effects in the range
5–60 Å. In our approach, no educated guess on the
actual constitutive behavior for the interface (or nonlocal
continuum model) is assumed. Rather, we have directly
deduced the scale effects from atomic-scale features. In
other words, the sale effects we have observed are directly
related to the discretization of the mass on the real atomic
lattice.

• correspondence between nanoscale structure and elastic
moduli; the lattice model was defined through a set
of interatomic parameters, predicting the macroscopic
behavior on the basis of linear and nonlinear elastic
moduli. We have obtained the universal relations
providing the analysis of the linear and nonlinear behavior
of a lattice with a given set of parameters, namely, the
determination of the macroscopic elastic constants when
the interatomic parameters are given. On the other hand,
we have also provided the synthesis of the lattice with an
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arbitrary desired elastic behavior, namely, the design or
the determination of the interatomic parameters starting
from the macroscopic elastic behavior. This approach has
been developed for a two-dimensional triangular lattice
(but several generalizations are straightforward).

• scaling exponent; we have proved that linear and nonlinear
scale effects are described by the same scaling exponent,
independently of the elastic contrast. This suggests that
the overall strain or stress field within an inhomogeneity
can be described by a similar power law with a universal
scaling exponent.

• evaluation of linear and nonlinear elastic moduli; for
specific complex materials promising new properties of
possibly large technological impact. We have described
the case of graphene and its hydrogenated conformers.
In particular, we have shown that B-graphane has a
vanishingly small (possibly negative) Poisson’s ratio
along the armchair and zigzag principal directions (axially
auxetic elastic behavior). Moreover, we observed
that C-graphane admits both softening and hardening
hyperelasticity, depending on the direction of applied load.

5.2. Perspective on possible future research directions

While this review presented quite a few situations of
paradigmatic importance and some conclusions valid for most
nanomaterials, several issues worthy of investigation still
remain open.

To begin, we take in consideration once again the Eshelby
theory for nonlinear particles embedded in a linear matrix. In
this review we have limited the treatment of nonlinear features
to the second order in strain. As a matter of fact, it is possible to
extend the theory to any order of nonlinearity, an issue of for-
mal relevance. Moreover, while we have only shown the results
for spherically shaped inhomogeneities, the Eshelby method
could be generalized (indeed a non-trivial task) to arbitrarily
shaped (in general, ellipsoidal) nanoparticles, thus approach-
ing some important configuration of technological relevance,
e.g. the one corresponding to fiber-reinforced nanomaterials.
Finally, the classical Eshelby theory can be used to investigate
an inhomogeneity with a different shape than the hosting cav-
ity; in this configuration a prestrain is generated in order to
create the perfect bonding between the external surface of the
particle and the internal surface of the cavity.

Another important open problem that should be taken
into consideration by continuum theory is the Eshelby
configuration with a nonlinear matrix, a situation that, to the
best of the author’s knowledge, has not yet been investigated.
This case can be most likely solved only numerically, for
example with the lattice model discussed in the present
review. Finally, the continuum theory should be extended
in order to consider nanostructured materials undergoing
large deformations (such as complex elastomers): in fact,
L–NL and NL–NL problems (see section 1.1) are relevant
for several applications as, for instance, nondestructive
testing of materials and ultrasound techniques, where finite
deformations and corresponding stress states can influence
wave propagation and hence interpretation of data. Modeling

wave propagation in biological materials is also important in
ultrasound techniques and biological soft tissues are often in a
largely deformed state due to growth and remodeling.

As for atomistic modeling, an obvious step forward with
respect to the present review consists of the generalization
of our consititutive force field approach to three-dimensional
lattices (at least for those ones characterized by high
symmetry). The extension to amorphous structures is also
useful for many applications. In particular, the results of
the analysis and synthesis approach can be straightforwardly
extended to both crystalline or amorphous structures such
as nanocomposites, polycrystals and multi-layered systems.
Atomistic modeling could be particularly important for
investigating the elastic properties of nonideal or tailor-
structured interfaces.

Another important direction for future investigation is
that of including into atomistic models the coupling among
different physical fields. As a matter of fact, there is a large
interest in determining the magnetic, electric and elastic fields
in composite structures with piezoelectric and magnetoelastic
phases. Typically, such heterogeneous materials are assembled
at the nanoscale and, therefore, the method based on
constitutive force fields is very promising. The coupling
between the elastic and thermal fields is important as well,
especially in technological applications where a large range
of temperatures must be taken into account. Therefore, the
generalization of the discussed atomistic models to finite
temperature defines yet another different research enterprise.
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